mirror of
https://github.com/rust-lang/rust.git
synced 2025-11-19 02:29:50 +00:00
The PR had some unforseen perf regressions that are not as easy to find. Revert the PR for now. This reverts commit 6ae8912a3e7d2c4c775024f58a7ba4b1aedc4073, reversing changes made to 86d6d2b7389fe1b339402c1798edae8b695fc9ef.
367 lines
11 KiB
Rust
367 lines
11 KiB
Rust
//! A graph module for use in dataflow, region resolution, and elsewhere.
|
|
//!
|
|
//! # Interface details
|
|
//!
|
|
//! You customize the graph by specifying a "node data" type `N` and an
|
|
//! "edge data" type `E`. You can then later gain access (mutable or
|
|
//! immutable) to these "user-data" bits. Currently, you can only add
|
|
//! nodes or edges to the graph. You cannot remove or modify them once
|
|
//! added. This could be changed if we have a need.
|
|
//!
|
|
//! # Implementation details
|
|
//!
|
|
//! The main tricky thing about this code is the way that edges are
|
|
//! stored. The edges are stored in a central array, but they are also
|
|
//! threaded onto two linked lists for each node, one for incoming edges
|
|
//! and one for outgoing edges. Note that every edge is a member of some
|
|
//! incoming list and some outgoing list. Basically you can load the
|
|
//! first index of the linked list from the node data structures (the
|
|
//! field `first_edge`) and then, for each edge, load the next index from
|
|
//! the field `next_edge`). Each of those fields is an array that should
|
|
//! be indexed by the direction (see the type `Direction`).
|
|
|
|
use crate::snapshot_vec::{SnapshotVec, SnapshotVecDelegate};
|
|
use rustc_index::bit_set::BitSet;
|
|
use std::fmt::Debug;
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
pub struct Graph<N, E> {
|
|
nodes: SnapshotVec<Node<N>>,
|
|
edges: SnapshotVec<Edge<E>>,
|
|
}
|
|
|
|
pub struct Node<N> {
|
|
first_edge: [EdgeIndex; 2], // see module comment
|
|
pub data: N,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Edge<E> {
|
|
next_edge: [EdgeIndex; 2], // see module comment
|
|
source: NodeIndex,
|
|
target: NodeIndex,
|
|
pub data: E,
|
|
}
|
|
|
|
impl<N> SnapshotVecDelegate for Node<N> {
|
|
type Value = Node<N>;
|
|
type Undo = ();
|
|
|
|
fn reverse(_: &mut Vec<Node<N>>, _: ()) {}
|
|
}
|
|
|
|
impl<N> SnapshotVecDelegate for Edge<N> {
|
|
type Value = Edge<N>;
|
|
type Undo = ();
|
|
|
|
fn reverse(_: &mut Vec<Edge<N>>, _: ()) {}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub struct NodeIndex(pub usize);
|
|
|
|
#[derive(Copy, Clone, PartialEq, Debug)]
|
|
pub struct EdgeIndex(pub usize);
|
|
|
|
pub const INVALID_EDGE_INDEX: EdgeIndex = EdgeIndex(usize::MAX);
|
|
|
|
// Use a private field here to guarantee no more instances are created:
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
pub struct Direction {
|
|
repr: usize,
|
|
}
|
|
|
|
pub const OUTGOING: Direction = Direction { repr: 0 };
|
|
|
|
pub const INCOMING: Direction = Direction { repr: 1 };
|
|
|
|
impl NodeIndex {
|
|
/// Returns unique ID (unique with respect to the graph holding associated node).
|
|
pub fn node_id(self) -> usize {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
impl<N: Debug, E: Debug> Graph<N, E> {
|
|
pub fn new() -> Graph<N, E> {
|
|
Graph { nodes: SnapshotVec::new(), edges: SnapshotVec::new() }
|
|
}
|
|
|
|
pub fn with_capacity(nodes: usize, edges: usize) -> Graph<N, E> {
|
|
Graph { nodes: SnapshotVec::with_capacity(nodes), edges: SnapshotVec::with_capacity(edges) }
|
|
}
|
|
|
|
// # Simple accessors
|
|
|
|
#[inline]
|
|
pub fn all_nodes(&self) -> &[Node<N>] {
|
|
&self.nodes
|
|
}
|
|
|
|
#[inline]
|
|
pub fn len_nodes(&self) -> usize {
|
|
self.nodes.len()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn all_edges(&self) -> &[Edge<E>] {
|
|
&self.edges
|
|
}
|
|
|
|
#[inline]
|
|
pub fn len_edges(&self) -> usize {
|
|
self.edges.len()
|
|
}
|
|
|
|
// # Node construction
|
|
|
|
pub fn next_node_index(&self) -> NodeIndex {
|
|
NodeIndex(self.nodes.len())
|
|
}
|
|
|
|
pub fn add_node(&mut self, data: N) -> NodeIndex {
|
|
let idx = self.next_node_index();
|
|
self.nodes.push(Node { first_edge: [INVALID_EDGE_INDEX, INVALID_EDGE_INDEX], data });
|
|
idx
|
|
}
|
|
|
|
pub fn mut_node_data(&mut self, idx: NodeIndex) -> &mut N {
|
|
&mut self.nodes[idx.0].data
|
|
}
|
|
|
|
pub fn node_data(&self, idx: NodeIndex) -> &N {
|
|
&self.nodes[idx.0].data
|
|
}
|
|
|
|
pub fn node(&self, idx: NodeIndex) -> &Node<N> {
|
|
&self.nodes[idx.0]
|
|
}
|
|
|
|
// # Edge construction and queries
|
|
|
|
pub fn next_edge_index(&self) -> EdgeIndex {
|
|
EdgeIndex(self.edges.len())
|
|
}
|
|
|
|
pub fn add_edge(&mut self, source: NodeIndex, target: NodeIndex, data: E) -> EdgeIndex {
|
|
debug!("graph: add_edge({:?}, {:?}, {:?})", source, target, data);
|
|
|
|
let idx = self.next_edge_index();
|
|
|
|
// read current first of the list of edges from each node
|
|
let source_first = self.nodes[source.0].first_edge[OUTGOING.repr];
|
|
let target_first = self.nodes[target.0].first_edge[INCOMING.repr];
|
|
|
|
// create the new edge, with the previous firsts from each node
|
|
// as the next pointers
|
|
self.edges.push(Edge { next_edge: [source_first, target_first], source, target, data });
|
|
|
|
// adjust the firsts for each node target be the next object.
|
|
self.nodes[source.0].first_edge[OUTGOING.repr] = idx;
|
|
self.nodes[target.0].first_edge[INCOMING.repr] = idx;
|
|
|
|
idx
|
|
}
|
|
|
|
pub fn edge(&self, idx: EdgeIndex) -> &Edge<E> {
|
|
&self.edges[idx.0]
|
|
}
|
|
|
|
// # Iterating over nodes, edges
|
|
|
|
pub fn enumerated_nodes(&self) -> impl Iterator<Item = (NodeIndex, &Node<N>)> {
|
|
self.nodes.iter().enumerate().map(|(idx, n)| (NodeIndex(idx), n))
|
|
}
|
|
|
|
pub fn enumerated_edges(&self) -> impl Iterator<Item = (EdgeIndex, &Edge<E>)> {
|
|
self.edges.iter().enumerate().map(|(idx, e)| (EdgeIndex(idx), e))
|
|
}
|
|
|
|
pub fn each_node<'a>(&'a self, mut f: impl FnMut(NodeIndex, &'a Node<N>) -> bool) -> bool {
|
|
//! Iterates over all edges defined in the graph.
|
|
self.enumerated_nodes().all(|(node_idx, node)| f(node_idx, node))
|
|
}
|
|
|
|
pub fn each_edge<'a>(&'a self, mut f: impl FnMut(EdgeIndex, &'a Edge<E>) -> bool) -> bool {
|
|
//! Iterates over all edges defined in the graph
|
|
self.enumerated_edges().all(|(edge_idx, edge)| f(edge_idx, edge))
|
|
}
|
|
|
|
pub fn outgoing_edges(&self, source: NodeIndex) -> AdjacentEdges<'_, N, E> {
|
|
self.adjacent_edges(source, OUTGOING)
|
|
}
|
|
|
|
pub fn incoming_edges(&self, source: NodeIndex) -> AdjacentEdges<'_, N, E> {
|
|
self.adjacent_edges(source, INCOMING)
|
|
}
|
|
|
|
pub fn adjacent_edges(
|
|
&self,
|
|
source: NodeIndex,
|
|
direction: Direction,
|
|
) -> AdjacentEdges<'_, N, E> {
|
|
let first_edge = self.node(source).first_edge[direction.repr];
|
|
AdjacentEdges { graph: self, direction, next: first_edge }
|
|
}
|
|
|
|
pub fn successor_nodes<'a>(
|
|
&'a self,
|
|
source: NodeIndex,
|
|
) -> impl Iterator<Item = NodeIndex> + 'a {
|
|
self.outgoing_edges(source).targets()
|
|
}
|
|
|
|
pub fn predecessor_nodes<'a>(
|
|
&'a self,
|
|
target: NodeIndex,
|
|
) -> impl Iterator<Item = NodeIndex> + 'a {
|
|
self.incoming_edges(target).sources()
|
|
}
|
|
|
|
pub fn depth_traverse(
|
|
&self,
|
|
start: NodeIndex,
|
|
direction: Direction,
|
|
) -> DepthFirstTraversal<'_, N, E> {
|
|
DepthFirstTraversal::with_start_node(self, start, direction)
|
|
}
|
|
|
|
pub fn nodes_in_postorder(
|
|
&self,
|
|
direction: Direction,
|
|
entry_node: NodeIndex,
|
|
) -> Vec<NodeIndex> {
|
|
let mut visited = BitSet::new_empty(self.len_nodes());
|
|
let mut stack = vec![];
|
|
let mut result = Vec::with_capacity(self.len_nodes());
|
|
let mut push_node = |stack: &mut Vec<_>, node: NodeIndex| {
|
|
if visited.insert(node.0) {
|
|
stack.push((node, self.adjacent_edges(node, direction)));
|
|
}
|
|
};
|
|
|
|
for node in
|
|
Some(entry_node).into_iter().chain(self.enumerated_nodes().map(|(node, _)| node))
|
|
{
|
|
push_node(&mut stack, node);
|
|
while let Some((node, mut iter)) = stack.pop() {
|
|
if let Some((_, child)) = iter.next() {
|
|
let target = child.source_or_target(direction);
|
|
// the current node needs more processing, so
|
|
// add it back to the stack
|
|
stack.push((node, iter));
|
|
// and then push the new node
|
|
push_node(&mut stack, target);
|
|
} else {
|
|
result.push(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert_eq!(result.len(), self.len_nodes());
|
|
result
|
|
}
|
|
}
|
|
|
|
// # Iterators
|
|
|
|
pub struct AdjacentEdges<'g, N, E> {
|
|
graph: &'g Graph<N, E>,
|
|
direction: Direction,
|
|
next: EdgeIndex,
|
|
}
|
|
|
|
impl<'g, N: Debug, E: Debug> AdjacentEdges<'g, N, E> {
|
|
fn targets(self) -> impl Iterator<Item = NodeIndex> + 'g {
|
|
self.map(|(_, edge)| edge.target)
|
|
}
|
|
|
|
fn sources(self) -> impl Iterator<Item = NodeIndex> + 'g {
|
|
self.map(|(_, edge)| edge.source)
|
|
}
|
|
}
|
|
|
|
impl<'g, N: Debug, E: Debug> Iterator for AdjacentEdges<'g, N, E> {
|
|
type Item = (EdgeIndex, &'g Edge<E>);
|
|
|
|
fn next(&mut self) -> Option<(EdgeIndex, &'g Edge<E>)> {
|
|
let edge_index = self.next;
|
|
if edge_index == INVALID_EDGE_INDEX {
|
|
return None;
|
|
}
|
|
|
|
let edge = self.graph.edge(edge_index);
|
|
self.next = edge.next_edge[self.direction.repr];
|
|
Some((edge_index, edge))
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
// At most, all the edges in the graph.
|
|
(0, Some(self.graph.len_edges()))
|
|
}
|
|
}
|
|
|
|
pub struct DepthFirstTraversal<'g, N, E> {
|
|
graph: &'g Graph<N, E>,
|
|
stack: Vec<NodeIndex>,
|
|
visited: BitSet<usize>,
|
|
direction: Direction,
|
|
}
|
|
|
|
impl<'g, N: Debug, E: Debug> DepthFirstTraversal<'g, N, E> {
|
|
pub fn with_start_node(
|
|
graph: &'g Graph<N, E>,
|
|
start_node: NodeIndex,
|
|
direction: Direction,
|
|
) -> Self {
|
|
let mut visited = BitSet::new_empty(graph.len_nodes());
|
|
visited.insert(start_node.node_id());
|
|
DepthFirstTraversal { graph, stack: vec![start_node], visited, direction }
|
|
}
|
|
|
|
fn visit(&mut self, node: NodeIndex) {
|
|
if self.visited.insert(node.node_id()) {
|
|
self.stack.push(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'g, N: Debug, E: Debug> Iterator for DepthFirstTraversal<'g, N, E> {
|
|
type Item = NodeIndex;
|
|
|
|
fn next(&mut self) -> Option<NodeIndex> {
|
|
let next = self.stack.pop();
|
|
if let Some(idx) = next {
|
|
for (_, edge) in self.graph.adjacent_edges(idx, self.direction) {
|
|
let target = edge.source_or_target(self.direction);
|
|
self.visit(target);
|
|
}
|
|
}
|
|
next
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
// We will visit every node in the graph exactly once.
|
|
let remaining = self.graph.len_nodes() - self.visited.count();
|
|
(remaining, Some(remaining))
|
|
}
|
|
}
|
|
|
|
impl<'g, N: Debug, E: Debug> ExactSizeIterator for DepthFirstTraversal<'g, N, E> {}
|
|
|
|
impl<E> Edge<E> {
|
|
pub fn source(&self) -> NodeIndex {
|
|
self.source
|
|
}
|
|
|
|
pub fn target(&self) -> NodeIndex {
|
|
self.target
|
|
}
|
|
|
|
pub fn source_or_target(&self, direction: Direction) -> NodeIndex {
|
|
if direction == OUTGOING { self.target } else { self.source }
|
|
}
|
|
}
|