mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-30 04:24:26 +00:00
647 lines
21 KiB
Rust
647 lines
21 KiB
Rust
use crate::dep_graph::DepKind;
|
|
use crate::error::CycleStack;
|
|
use crate::query::plumbing::CycleError;
|
|
use crate::query::{QueryContext, QueryStackFrame};
|
|
use core::marker::PhantomData;
|
|
|
|
use rustc_data_structures::fx::FxHashMap;
|
|
use rustc_errors::{
|
|
Diagnostic, DiagnosticBuilder, ErrorGuaranteed, Handler, IntoDiagnostic, Level,
|
|
};
|
|
use rustc_hir::def::DefKind;
|
|
use rustc_session::Session;
|
|
use rustc_span::Span;
|
|
|
|
use std::hash::Hash;
|
|
use std::num::NonZeroU64;
|
|
|
|
#[cfg(parallel_compiler)]
|
|
use {
|
|
parking_lot::{Condvar, Mutex},
|
|
rayon_core,
|
|
rustc_data_structures::fx::FxHashSet,
|
|
rustc_data_structures::sync::Lock,
|
|
rustc_data_structures::sync::Lrc,
|
|
rustc_data_structures::{defer, jobserver},
|
|
rustc_span::DUMMY_SP,
|
|
std::iter,
|
|
std::process,
|
|
};
|
|
|
|
/// Represents a span and a query key.
|
|
#[derive(Clone, Debug)]
|
|
pub struct QueryInfo<D: DepKind> {
|
|
/// The span corresponding to the reason for which this query was required.
|
|
pub span: Span,
|
|
pub query: QueryStackFrame<D>,
|
|
}
|
|
|
|
pub type QueryMap<D> = FxHashMap<QueryJobId, QueryJobInfo<D>>;
|
|
|
|
/// A value uniquely identifying an active query job.
|
|
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
|
|
pub struct QueryJobId(pub NonZeroU64);
|
|
|
|
impl QueryJobId {
|
|
fn query<D: DepKind>(self, map: &QueryMap<D>) -> QueryStackFrame<D> {
|
|
map.get(&self).unwrap().query.clone()
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
fn span<D: DepKind>(self, map: &QueryMap<D>) -> Span {
|
|
map.get(&self).unwrap().job.span
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
fn parent<D: DepKind>(self, map: &QueryMap<D>) -> Option<QueryJobId> {
|
|
map.get(&self).unwrap().job.parent
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
fn latch<D: DepKind>(self, map: &QueryMap<D>) -> Option<&QueryLatch<D>> {
|
|
map.get(&self).unwrap().job.latch.as_ref()
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct QueryJobInfo<D: DepKind> {
|
|
pub query: QueryStackFrame<D>,
|
|
pub job: QueryJob<D>,
|
|
}
|
|
|
|
/// Represents an active query job.
|
|
#[derive(Clone)]
|
|
pub struct QueryJob<D: DepKind> {
|
|
pub id: QueryJobId,
|
|
|
|
/// The span corresponding to the reason for which this query was required.
|
|
pub span: Span,
|
|
|
|
/// The parent query job which created this job and is implicitly waiting on it.
|
|
pub parent: Option<QueryJobId>,
|
|
|
|
/// The latch that is used to wait on this job.
|
|
#[cfg(parallel_compiler)]
|
|
latch: Option<QueryLatch<D>>,
|
|
spooky: core::marker::PhantomData<D>,
|
|
}
|
|
|
|
impl<D: DepKind> QueryJob<D> {
|
|
/// Creates a new query job.
|
|
#[inline]
|
|
pub fn new(id: QueryJobId, span: Span, parent: Option<QueryJobId>) -> Self {
|
|
QueryJob {
|
|
id,
|
|
span,
|
|
parent,
|
|
#[cfg(parallel_compiler)]
|
|
latch: None,
|
|
spooky: PhantomData,
|
|
}
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
pub(super) fn latch(&mut self) -> QueryLatch<D> {
|
|
if self.latch.is_none() {
|
|
self.latch = Some(QueryLatch::new());
|
|
}
|
|
self.latch.as_ref().unwrap().clone()
|
|
}
|
|
|
|
/// Signals to waiters that the query is complete.
|
|
///
|
|
/// This does nothing for single threaded rustc,
|
|
/// as there are no concurrent jobs which could be waiting on us
|
|
#[inline]
|
|
pub fn signal_complete(self) {
|
|
#[cfg(parallel_compiler)]
|
|
{
|
|
if let Some(latch) = self.latch {
|
|
latch.set();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl QueryJobId {
|
|
#[cfg(not(parallel_compiler))]
|
|
pub(super) fn find_cycle_in_stack<D: DepKind>(
|
|
&self,
|
|
query_map: QueryMap<D>,
|
|
current_job: &Option<QueryJobId>,
|
|
span: Span,
|
|
) -> CycleError<D> {
|
|
// Find the waitee amongst `current_job` parents
|
|
let mut cycle = Vec::new();
|
|
let mut current_job = Option::clone(current_job);
|
|
|
|
while let Some(job) = current_job {
|
|
let info = query_map.get(&job).unwrap();
|
|
cycle.push(QueryInfo { span: info.job.span, query: info.query.clone() });
|
|
|
|
if job == *self {
|
|
cycle.reverse();
|
|
|
|
// This is the end of the cycle
|
|
// The span entry we included was for the usage
|
|
// of the cycle itself, and not part of the cycle
|
|
// Replace it with the span which caused the cycle to form
|
|
cycle[0].span = span;
|
|
// Find out why the cycle itself was used
|
|
let usage = info
|
|
.job
|
|
.parent
|
|
.as_ref()
|
|
.map(|parent| (info.job.span, parent.query(&query_map)));
|
|
return CycleError { usage, cycle };
|
|
}
|
|
|
|
current_job = info.job.parent;
|
|
}
|
|
|
|
panic!("did not find a cycle")
|
|
}
|
|
|
|
#[cold]
|
|
#[inline(never)]
|
|
pub fn try_find_layout_root<D: DepKind>(
|
|
&self,
|
|
query_map: QueryMap<D>,
|
|
) -> Option<(QueryJobInfo<D>, usize)> {
|
|
let mut last_layout = None;
|
|
let mut current_id = Some(*self);
|
|
let mut depth = 0;
|
|
|
|
while let Some(id) = current_id {
|
|
let info = query_map.get(&id).unwrap();
|
|
// FIXME: This string comparison should probably not be done.
|
|
if format!("{:?}", info.query.dep_kind) == "layout_of" {
|
|
depth += 1;
|
|
last_layout = Some((info.clone(), depth));
|
|
}
|
|
current_id = info.job.parent;
|
|
}
|
|
last_layout
|
|
}
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
struct QueryWaiter<D: DepKind> {
|
|
query: Option<QueryJobId>,
|
|
condvar: Condvar,
|
|
span: Span,
|
|
cycle: Lock<Option<CycleError<D>>>,
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
impl<D: DepKind> QueryWaiter<D> {
|
|
fn notify(&self, registry: &rayon_core::Registry) {
|
|
rayon_core::mark_unblocked(registry);
|
|
self.condvar.notify_one();
|
|
}
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
struct QueryLatchInfo<D: DepKind> {
|
|
complete: bool,
|
|
waiters: Vec<Lrc<QueryWaiter<D>>>,
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
#[derive(Clone)]
|
|
pub(super) struct QueryLatch<D: DepKind> {
|
|
info: Lrc<Mutex<QueryLatchInfo<D>>>,
|
|
}
|
|
|
|
#[cfg(parallel_compiler)]
|
|
impl<D: DepKind> QueryLatch<D> {
|
|
fn new() -> Self {
|
|
QueryLatch {
|
|
info: Lrc::new(Mutex::new(QueryLatchInfo { complete: false, waiters: Vec::new() })),
|
|
}
|
|
}
|
|
|
|
/// Awaits for the query job to complete.
|
|
pub(super) fn wait_on(
|
|
&self,
|
|
query: Option<QueryJobId>,
|
|
span: Span,
|
|
) -> Result<(), CycleError<D>> {
|
|
let waiter =
|
|
Lrc::new(QueryWaiter { query, span, cycle: Lock::new(None), condvar: Condvar::new() });
|
|
self.wait_on_inner(&waiter);
|
|
// FIXME: Get rid of this lock. We have ownership of the QueryWaiter
|
|
// although another thread may still have a Lrc reference so we cannot
|
|
// use Lrc::get_mut
|
|
let mut cycle = waiter.cycle.lock();
|
|
match cycle.take() {
|
|
None => Ok(()),
|
|
Some(cycle) => Err(cycle),
|
|
}
|
|
}
|
|
|
|
/// Awaits the caller on this latch by blocking the current thread.
|
|
fn wait_on_inner(&self, waiter: &Lrc<QueryWaiter<D>>) {
|
|
let mut info = self.info.lock();
|
|
if !info.complete {
|
|
// We push the waiter on to the `waiters` list. It can be accessed inside
|
|
// the `wait` call below, by 1) the `set` method or 2) by deadlock detection.
|
|
// Both of these will remove it from the `waiters` list before resuming
|
|
// this thread.
|
|
info.waiters.push(waiter.clone());
|
|
|
|
// If this detects a deadlock and the deadlock handler wants to resume this thread
|
|
// we have to be in the `wait` call. This is ensured by the deadlock handler
|
|
// getting the self.info lock.
|
|
rayon_core::mark_blocked();
|
|
jobserver::release_thread();
|
|
waiter.condvar.wait(&mut info);
|
|
// Release the lock before we potentially block in `acquire_thread`
|
|
drop(info);
|
|
jobserver::acquire_thread();
|
|
}
|
|
}
|
|
|
|
/// Sets the latch and resumes all waiters on it
|
|
fn set(&self) {
|
|
let mut info = self.info.lock();
|
|
debug_assert!(!info.complete);
|
|
info.complete = true;
|
|
let registry = rayon_core::Registry::current();
|
|
for waiter in info.waiters.drain(..) {
|
|
waiter.notify(®istry);
|
|
}
|
|
}
|
|
|
|
/// Removes a single waiter from the list of waiters.
|
|
/// This is used to break query cycles.
|
|
fn extract_waiter(&self, waiter: usize) -> Lrc<QueryWaiter<D>> {
|
|
let mut info = self.info.lock();
|
|
debug_assert!(!info.complete);
|
|
// Remove the waiter from the list of waiters
|
|
info.waiters.remove(waiter)
|
|
}
|
|
}
|
|
|
|
/// A resumable waiter of a query. The usize is the index into waiters in the query's latch
|
|
#[cfg(parallel_compiler)]
|
|
type Waiter = (QueryJobId, usize);
|
|
|
|
/// Visits all the non-resumable and resumable waiters of a query.
|
|
/// Only waiters in a query are visited.
|
|
/// `visit` is called for every waiter and is passed a query waiting on `query_ref`
|
|
/// and a span indicating the reason the query waited on `query_ref`.
|
|
/// If `visit` returns Some, this function returns.
|
|
/// For visits of non-resumable waiters it returns the return value of `visit`.
|
|
/// For visits of resumable waiters it returns Some(Some(Waiter)) which has the
|
|
/// required information to resume the waiter.
|
|
/// If all `visit` calls returns None, this function also returns None.
|
|
#[cfg(parallel_compiler)]
|
|
fn visit_waiters<F, D>(
|
|
query_map: &QueryMap<D>,
|
|
query: QueryJobId,
|
|
mut visit: F,
|
|
) -> Option<Option<Waiter>>
|
|
where
|
|
F: FnMut(Span, QueryJobId) -> Option<Option<Waiter>>,
|
|
D: DepKind,
|
|
{
|
|
// Visit the parent query which is a non-resumable waiter since it's on the same stack
|
|
if let Some(parent) = query.parent(query_map) {
|
|
if let Some(cycle) = visit(query.span(query_map), parent) {
|
|
return Some(cycle);
|
|
}
|
|
}
|
|
|
|
// Visit the explicit waiters which use condvars and are resumable
|
|
if let Some(latch) = query.latch(query_map) {
|
|
for (i, waiter) in latch.info.lock().waiters.iter().enumerate() {
|
|
if let Some(waiter_query) = waiter.query {
|
|
if visit(waiter.span, waiter_query).is_some() {
|
|
// Return a value which indicates that this waiter can be resumed
|
|
return Some(Some((query, i)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Look for query cycles by doing a depth first search starting at `query`.
|
|
/// `span` is the reason for the `query` to execute. This is initially DUMMY_SP.
|
|
/// If a cycle is detected, this initial value is replaced with the span causing
|
|
/// the cycle.
|
|
#[cfg(parallel_compiler)]
|
|
fn cycle_check<D: DepKind>(
|
|
query_map: &QueryMap<D>,
|
|
query: QueryJobId,
|
|
span: Span,
|
|
stack: &mut Vec<(Span, QueryJobId)>,
|
|
visited: &mut FxHashSet<QueryJobId>,
|
|
) -> Option<Option<Waiter>> {
|
|
if !visited.insert(query) {
|
|
return if let Some(p) = stack.iter().position(|q| q.1 == query) {
|
|
// We detected a query cycle, fix up the initial span and return Some
|
|
|
|
// Remove previous stack entries
|
|
stack.drain(0..p);
|
|
// Replace the span for the first query with the cycle cause
|
|
stack[0].0 = span;
|
|
Some(None)
|
|
} else {
|
|
None
|
|
};
|
|
}
|
|
|
|
// Query marked as visited is added it to the stack
|
|
stack.push((span, query));
|
|
|
|
// Visit all the waiters
|
|
let r = visit_waiters(query_map, query, |span, successor| {
|
|
cycle_check(query_map, successor, span, stack, visited)
|
|
});
|
|
|
|
// Remove the entry in our stack if we didn't find a cycle
|
|
if r.is_none() {
|
|
stack.pop();
|
|
}
|
|
|
|
r
|
|
}
|
|
|
|
/// Finds out if there's a path to the compiler root (aka. code which isn't in a query)
|
|
/// from `query` without going through any of the queries in `visited`.
|
|
/// This is achieved with a depth first search.
|
|
#[cfg(parallel_compiler)]
|
|
fn connected_to_root<D: DepKind>(
|
|
query_map: &QueryMap<D>,
|
|
query: QueryJobId,
|
|
visited: &mut FxHashSet<QueryJobId>,
|
|
) -> bool {
|
|
// We already visited this or we're deliberately ignoring it
|
|
if !visited.insert(query) {
|
|
return false;
|
|
}
|
|
|
|
// This query is connected to the root (it has no query parent), return true
|
|
if query.parent(query_map).is_none() {
|
|
return true;
|
|
}
|
|
|
|
visit_waiters(query_map, query, |_, successor| {
|
|
connected_to_root(query_map, successor, visited).then_some(None)
|
|
})
|
|
.is_some()
|
|
}
|
|
|
|
// Deterministically pick an query from a list
|
|
#[cfg(parallel_compiler)]
|
|
fn pick_query<'a, T, F, D>(query_map: &QueryMap<D>, queries: &'a [T], f: F) -> &'a T
|
|
where
|
|
F: Fn(&T) -> (Span, QueryJobId),
|
|
D: DepKind,
|
|
{
|
|
// Deterministically pick an entry point
|
|
// FIXME: Sort this instead
|
|
queries
|
|
.iter()
|
|
.min_by_key(|v| {
|
|
let (span, query) = f(v);
|
|
let hash = query.query(query_map).hash;
|
|
// Prefer entry points which have valid spans for nicer error messages
|
|
// We add an integer to the tuple ensuring that entry points
|
|
// with valid spans are picked first
|
|
let span_cmp = if span == DUMMY_SP { 1 } else { 0 };
|
|
(span_cmp, hash)
|
|
})
|
|
.unwrap()
|
|
}
|
|
|
|
/// Looks for query cycles starting from the last query in `jobs`.
|
|
/// If a cycle is found, all queries in the cycle is removed from `jobs` and
|
|
/// the function return true.
|
|
/// If a cycle was not found, the starting query is removed from `jobs` and
|
|
/// the function returns false.
|
|
#[cfg(parallel_compiler)]
|
|
fn remove_cycle<D: DepKind>(
|
|
query_map: &QueryMap<D>,
|
|
jobs: &mut Vec<QueryJobId>,
|
|
wakelist: &mut Vec<Lrc<QueryWaiter<D>>>,
|
|
) -> bool {
|
|
let mut visited = FxHashSet::default();
|
|
let mut stack = Vec::new();
|
|
// Look for a cycle starting with the last query in `jobs`
|
|
if let Some(waiter) =
|
|
cycle_check(query_map, jobs.pop().unwrap(), DUMMY_SP, &mut stack, &mut visited)
|
|
{
|
|
// The stack is a vector of pairs of spans and queries; reverse it so that
|
|
// the earlier entries require later entries
|
|
let (mut spans, queries): (Vec<_>, Vec<_>) = stack.into_iter().rev().unzip();
|
|
|
|
// Shift the spans so that queries are matched with the span for their waitee
|
|
spans.rotate_right(1);
|
|
|
|
// Zip them back together
|
|
let mut stack: Vec<_> = iter::zip(spans, queries).collect();
|
|
|
|
// Remove the queries in our cycle from the list of jobs to look at
|
|
for r in &stack {
|
|
if let Some(pos) = jobs.iter().position(|j| j == &r.1) {
|
|
jobs.remove(pos);
|
|
}
|
|
}
|
|
|
|
// Find the queries in the cycle which are
|
|
// connected to queries outside the cycle
|
|
let entry_points = stack
|
|
.iter()
|
|
.filter_map(|&(span, query)| {
|
|
if query.parent(query_map).is_none() {
|
|
// This query is connected to the root (it has no query parent)
|
|
Some((span, query, None))
|
|
} else {
|
|
let mut waiters = Vec::new();
|
|
// Find all the direct waiters who lead to the root
|
|
visit_waiters(query_map, query, |span, waiter| {
|
|
// Mark all the other queries in the cycle as already visited
|
|
let mut visited = FxHashSet::from_iter(stack.iter().map(|q| q.1));
|
|
|
|
if connected_to_root(query_map, waiter, &mut visited) {
|
|
waiters.push((span, waiter));
|
|
}
|
|
|
|
None
|
|
});
|
|
if waiters.is_empty() {
|
|
None
|
|
} else {
|
|
// Deterministically pick one of the waiters to show to the user
|
|
let waiter = *pick_query(query_map, &waiters, |s| *s);
|
|
Some((span, query, Some(waiter)))
|
|
}
|
|
}
|
|
})
|
|
.collect::<Vec<(Span, QueryJobId, Option<(Span, QueryJobId)>)>>();
|
|
|
|
// Deterministically pick an entry point
|
|
let (_, entry_point, usage) = pick_query(query_map, &entry_points, |e| (e.0, e.1));
|
|
|
|
// Shift the stack so that our entry point is first
|
|
let entry_point_pos = stack.iter().position(|(_, query)| query == entry_point);
|
|
if let Some(pos) = entry_point_pos {
|
|
stack.rotate_left(pos);
|
|
}
|
|
|
|
let usage = usage.as_ref().map(|(span, query)| (*span, query.query(query_map)));
|
|
|
|
// Create the cycle error
|
|
let error = CycleError {
|
|
usage,
|
|
cycle: stack
|
|
.iter()
|
|
.map(|&(s, ref q)| QueryInfo { span: s, query: q.query(query_map) })
|
|
.collect(),
|
|
};
|
|
|
|
// We unwrap `waiter` here since there must always be one
|
|
// edge which is resumable / waited using a query latch
|
|
let (waitee_query, waiter_idx) = waiter.unwrap();
|
|
|
|
// Extract the waiter we want to resume
|
|
let waiter = waitee_query.latch(query_map).unwrap().extract_waiter(waiter_idx);
|
|
|
|
// Set the cycle error so it will be picked up when resumed
|
|
*waiter.cycle.lock() = Some(error);
|
|
|
|
// Put the waiter on the list of things to resume
|
|
wakelist.push(waiter);
|
|
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Detects query cycles by using depth first search over all active query jobs.
|
|
/// If a query cycle is found it will break the cycle by finding an edge which
|
|
/// uses a query latch and then resuming that waiter.
|
|
/// There may be multiple cycles involved in a deadlock, so this searches
|
|
/// all active queries for cycles before finally resuming all the waiters at once.
|
|
#[cfg(parallel_compiler)]
|
|
pub fn deadlock<D: DepKind>(query_map: QueryMap<D>, registry: &rayon_core::Registry) {
|
|
let on_panic = defer(|| {
|
|
eprintln!("deadlock handler panicked, aborting process");
|
|
process::abort();
|
|
});
|
|
|
|
let mut wakelist = Vec::new();
|
|
let mut jobs: Vec<QueryJobId> = query_map.keys().cloned().collect();
|
|
|
|
let mut found_cycle = false;
|
|
|
|
while jobs.len() > 0 {
|
|
if remove_cycle(&query_map, &mut jobs, &mut wakelist) {
|
|
found_cycle = true;
|
|
}
|
|
}
|
|
|
|
// Check that a cycle was found. It is possible for a deadlock to occur without
|
|
// a query cycle if a query which can be waited on uses Rayon to do multithreading
|
|
// internally. Such a query (X) may be executing on 2 threads (A and B) and A may
|
|
// wait using Rayon on B. Rayon may then switch to executing another query (Y)
|
|
// which in turn will wait on X causing a deadlock. We have a false dependency from
|
|
// X to Y due to Rayon waiting and a true dependency from Y to X. The algorithm here
|
|
// only considers the true dependency and won't detect a cycle.
|
|
assert!(found_cycle);
|
|
|
|
// FIXME: Ensure this won't cause a deadlock before we return
|
|
for waiter in wakelist.into_iter() {
|
|
waiter.notify(registry);
|
|
}
|
|
|
|
on_panic.disable();
|
|
}
|
|
|
|
#[inline(never)]
|
|
#[cold]
|
|
pub(crate) fn report_cycle<'a, D: DepKind>(
|
|
sess: &'a Session,
|
|
CycleError { usage, cycle: stack }: &CycleError<D>,
|
|
) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
|
|
assert!(!stack.is_empty());
|
|
|
|
let span = stack[0].query.default_span(stack[1 % stack.len()].span);
|
|
|
|
let mut cycle_stack = Vec::new();
|
|
|
|
use crate::error::StackCount;
|
|
let stack_count = if stack.len() == 1 { StackCount::Single } else { StackCount::Multiple };
|
|
|
|
for i in 1..stack.len() {
|
|
let query = &stack[i].query;
|
|
let span = query.default_span(stack[(i + 1) % stack.len()].span);
|
|
cycle_stack.push(CycleStack { span, desc: query.description.to_owned() });
|
|
}
|
|
|
|
let mut cycle_usage = None;
|
|
if let Some((span, ref query)) = *usage {
|
|
cycle_usage = Some(crate::error::CycleUsage {
|
|
span: query.default_span(span),
|
|
usage: query.description.to_string(),
|
|
});
|
|
}
|
|
|
|
let alias = if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TyAlias)) {
|
|
Some(crate::error::Alias::Ty)
|
|
} else if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TraitAlias)) {
|
|
Some(crate::error::Alias::Trait)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let cycle_diag = crate::error::Cycle {
|
|
span,
|
|
cycle_stack,
|
|
stack_bottom: stack[0].query.description.to_owned(),
|
|
alias,
|
|
cycle_usage: cycle_usage,
|
|
stack_count,
|
|
};
|
|
|
|
cycle_diag.into_diagnostic(&sess.parse_sess.span_diagnostic)
|
|
}
|
|
|
|
pub fn print_query_stack<Qcx: QueryContext>(
|
|
qcx: Qcx,
|
|
mut current_query: Option<QueryJobId>,
|
|
handler: &Handler,
|
|
num_frames: Option<usize>,
|
|
) -> usize {
|
|
// Be careful relying on global state here: this code is called from
|
|
// a panic hook, which means that the global `Handler` may be in a weird
|
|
// state if it was responsible for triggering the panic.
|
|
let mut i = 0;
|
|
let query_map = qcx.try_collect_active_jobs();
|
|
|
|
while let Some(query) = current_query {
|
|
if Some(i) == num_frames {
|
|
break;
|
|
}
|
|
let Some(query_info) = query_map.as_ref().and_then(|map| map.get(&query)) else {
|
|
break;
|
|
};
|
|
let mut diag = Diagnostic::new(
|
|
Level::FailureNote,
|
|
format!("#{} [{:?}] {}", i, query_info.query.dep_kind, query_info.query.description),
|
|
);
|
|
diag.span = query_info.job.span.into();
|
|
handler.force_print_diagnostic(diag);
|
|
|
|
current_query = query_info.job.parent;
|
|
i += 1;
|
|
}
|
|
|
|
i
|
|
}
|