mirror of
https://github.com/rust-lang/rust.git
synced 2025-11-10 12:01:23 +00:00
870 lines
33 KiB
Rust
870 lines
33 KiB
Rust
//! Utilities for the slice primitive type.
|
|
//!
|
|
//! *[See also the slice primitive type](slice).*
|
|
//!
|
|
//! Most of the structs in this module are iterator types which can only be created
|
|
//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
|
|
//!
|
|
//! A few functions are provided to create a slice from a value reference
|
|
//! or from a raw pointer.
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
use core::borrow::{Borrow, BorrowMut};
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use core::cmp::Ordering::{self, Less};
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use core::mem::MaybeUninit;
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use core::ptr;
|
|
#[unstable(feature = "array_windows", issue = "75027")]
|
|
pub use core::slice::ArrayWindows;
|
|
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
|
|
pub use core::slice::EscapeAscii;
|
|
#[stable(feature = "get_many_mut", since = "1.86.0")]
|
|
pub use core::slice::GetDisjointMutError;
|
|
#[stable(feature = "slice_get_slice", since = "1.28.0")]
|
|
pub use core::slice::SliceIndex;
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use core::slice::sort;
|
|
#[stable(feature = "slice_group_by", since = "1.77.0")]
|
|
pub use core::slice::{ChunkBy, ChunkByMut};
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use core::slice::{Chunks, Windows};
|
|
#[stable(feature = "chunks_exact", since = "1.31.0")]
|
|
pub use core::slice::{ChunksExact, ChunksExactMut};
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use core::slice::{ChunksMut, Split, SplitMut};
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use core::slice::{Iter, IterMut};
|
|
#[stable(feature = "rchunks", since = "1.31.0")]
|
|
pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
|
|
#[stable(feature = "slice_rsplit", since = "1.27.0")]
|
|
pub use core::slice::{RSplit, RSplitMut};
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
|
|
#[stable(feature = "split_inclusive", since = "1.51.0")]
|
|
pub use core::slice::{SplitInclusive, SplitInclusiveMut};
|
|
#[stable(feature = "from_ref", since = "1.28.0")]
|
|
pub use core::slice::{from_mut, from_ref};
|
|
#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
|
|
pub use core::slice::{from_mut_ptr_range, from_ptr_range};
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
|
|
#[unstable(feature = "slice_range", issue = "76393")]
|
|
pub use core::slice::{range, try_range};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Basic slice extension methods
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
use crate::alloc::Allocator;
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use crate::alloc::Global;
|
|
#[cfg(not(no_global_oom_handling))]
|
|
use crate::borrow::ToOwned;
|
|
use crate::boxed::Box;
|
|
use crate::vec::Vec;
|
|
|
|
impl<T> [T] {
|
|
/// Sorts the slice in ascending order, preserving initial order of equal elements.
|
|
///
|
|
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
|
|
/// worst-case.
|
|
///
|
|
/// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
|
|
/// may panic; even if the function exits normally, the resulting order of elements in the slice
|
|
/// is unspecified. See also the note on panicking below.
|
|
///
|
|
/// When applicable, unstable sorting is preferred because it is generally faster than stable
|
|
/// sorting and it doesn't allocate auxiliary memory. See
|
|
/// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which
|
|
/// may be better served with `slice::sort`.
|
|
///
|
|
/// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
|
|
/// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
|
|
/// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
|
|
/// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total
|
|
/// order] users can sort slices containing floating-point values. Alternatively, if all values
|
|
/// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a
|
|
/// [total order], it's possible to sort the slice with `sort_by(|a, b|
|
|
/// a.partial_cmp(b).unwrap())`.
|
|
///
|
|
/// # Current implementation
|
|
///
|
|
/// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
|
|
/// combines the fast average case of quicksort with the fast worst case and partial run
|
|
/// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
|
|
/// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
|
|
///
|
|
/// The auxiliary memory allocation behavior depends on the input length. Short slices are
|
|
/// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
|
|
/// clamps at `self.len() / 2`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
|
|
/// the [`Ord`] implementation itself panics.
|
|
///
|
|
/// All safe functions on slices preserve the invariant that even if the function panics, all
|
|
/// original elements will remain in the slice and any possible modifications via interior
|
|
/// mutability are observed in the input. This ensures that recovery code (for instance inside
|
|
/// of a `Drop` or following a `catch_unwind`) will still have access to all the original
|
|
/// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
|
|
/// to dispose of all contained elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = [4, -5, 1, -3, 2];
|
|
///
|
|
/// v.sort();
|
|
/// assert_eq!(v, [-5, -3, 1, 2, 4]);
|
|
/// ```
|
|
///
|
|
/// [driftsort]: https://github.com/Voultapher/driftsort
|
|
/// [total order]: https://en.wikipedia.org/wiki/Total_order
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn sort(&mut self)
|
|
where
|
|
T: Ord,
|
|
{
|
|
stable_sort(self, T::lt);
|
|
}
|
|
|
|
/// Sorts the slice in ascending order with a comparison function, preserving initial order of
|
|
/// equal elements.
|
|
///
|
|
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
|
|
/// worst-case.
|
|
///
|
|
/// If the comparison function `compare` does not implement a [total order], the function may
|
|
/// panic; even if the function exits normally, the resulting order of elements in the slice is
|
|
/// unspecified. See also the note on panicking below.
|
|
///
|
|
/// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
|
|
/// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
|
|
/// examples see the [`Ord`] documentation.
|
|
///
|
|
/// # Current implementation
|
|
///
|
|
/// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
|
|
/// combines the fast average case of quicksort with the fast worst case and partial run
|
|
/// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
|
|
/// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
|
|
///
|
|
/// The auxiliary memory allocation behavior depends on the input length. Short slices are
|
|
/// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
|
|
/// clamps at `self.len() / 2`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// May panic if `compare` does not implement a [total order], or if `compare` itself panics.
|
|
///
|
|
/// All safe functions on slices preserve the invariant that even if the function panics, all
|
|
/// original elements will remain in the slice and any possible modifications via interior
|
|
/// mutability are observed in the input. This ensures that recovery code (for instance inside
|
|
/// of a `Drop` or following a `catch_unwind`) will still have access to all the original
|
|
/// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
|
|
/// to dispose of all contained elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = [4, -5, 1, -3, 2];
|
|
/// v.sort_by(|a, b| a.cmp(b));
|
|
/// assert_eq!(v, [-5, -3, 1, 2, 4]);
|
|
///
|
|
/// // reverse sorting
|
|
/// v.sort_by(|a, b| b.cmp(a));
|
|
/// assert_eq!(v, [4, 2, 1, -3, -5]);
|
|
/// ```
|
|
///
|
|
/// [driftsort]: https://github.com/Voultapher/driftsort
|
|
/// [total order]: https://en.wikipedia.org/wiki/Total_order
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn sort_by<F>(&mut self, mut compare: F)
|
|
where
|
|
F: FnMut(&T, &T) -> Ordering,
|
|
{
|
|
stable_sort(self, |a, b| compare(a, b) == Less);
|
|
}
|
|
|
|
/// Sorts the slice in ascending order with a key extraction function, preserving initial order
|
|
/// of equal elements.
|
|
///
|
|
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
|
|
/// worst-case, where the key function is *O*(*m*).
|
|
///
|
|
/// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
|
|
/// may panic; even if the function exits normally, the resulting order of elements in the slice
|
|
/// is unspecified. See also the note on panicking below.
|
|
///
|
|
/// # Current implementation
|
|
///
|
|
/// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
|
|
/// combines the fast average case of quicksort with the fast worst case and partial run
|
|
/// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
|
|
/// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
|
|
///
|
|
/// The auxiliary memory allocation behavior depends on the input length. Short slices are
|
|
/// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
|
|
/// clamps at `self.len() / 2`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
|
|
/// the [`Ord`] implementation or the key-function `f` panics.
|
|
///
|
|
/// All safe functions on slices preserve the invariant that even if the function panics, all
|
|
/// original elements will remain in the slice and any possible modifications via interior
|
|
/// mutability are observed in the input. This ensures that recovery code (for instance inside
|
|
/// of a `Drop` or following a `catch_unwind`) will still have access to all the original
|
|
/// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
|
|
/// to dispose of all contained elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = [4i32, -5, 1, -3, 2];
|
|
///
|
|
/// v.sort_by_key(|k| k.abs());
|
|
/// assert_eq!(v, [1, 2, -3, 4, -5]);
|
|
/// ```
|
|
///
|
|
/// [driftsort]: https://github.com/Voultapher/driftsort
|
|
/// [total order]: https://en.wikipedia.org/wiki/Total_order
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "slice_sort_by_key", since = "1.7.0")]
|
|
#[inline]
|
|
pub fn sort_by_key<K, F>(&mut self, mut f: F)
|
|
where
|
|
F: FnMut(&T) -> K,
|
|
K: Ord,
|
|
{
|
|
stable_sort(self, |a, b| f(a).lt(&f(b)));
|
|
}
|
|
|
|
/// Sorts the slice in ascending order with a key extraction function, preserving initial order
|
|
/// of equal elements.
|
|
///
|
|
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \*
|
|
/// log(*n*)) worst-case, where the key function is *O*(*m*).
|
|
///
|
|
/// During sorting, the key function is called at most once per element, by using temporary
|
|
/// storage to remember the results of key evaluation. The order of calls to the key function is
|
|
/// unspecified and may change in future versions of the standard library.
|
|
///
|
|
/// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
|
|
/// may panic; even if the function exits normally, the resulting order of elements in the slice
|
|
/// is unspecified. See also the note on panicking below.
|
|
///
|
|
/// For simple key functions (e.g., functions that are property accesses or basic operations),
|
|
/// [`sort_by_key`](slice::sort_by_key) is likely to be faster.
|
|
///
|
|
/// # Current implementation
|
|
///
|
|
/// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas
|
|
/// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst
|
|
/// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And
|
|
/// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages
|
|
/// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently
|
|
/// perform the operation.
|
|
///
|
|
/// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
|
|
/// length of the slice.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
|
|
/// the [`Ord`] implementation panics.
|
|
///
|
|
/// All safe functions on slices preserve the invariant that even if the function panics, all
|
|
/// original elements will remain in the slice and any possible modifications via interior
|
|
/// mutability are observed in the input. This ensures that recovery code (for instance inside
|
|
/// of a `Drop` or following a `catch_unwind`) will still have access to all the original
|
|
/// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
|
|
/// to dispose of all contained elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = [4i32, -5, 1, -3, 2, 10];
|
|
///
|
|
/// // Strings are sorted by lexicographical order.
|
|
/// v.sort_by_cached_key(|k| k.to_string());
|
|
/// assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
|
|
/// ```
|
|
///
|
|
/// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
|
|
/// [total order]: https://en.wikipedia.org/wiki/Total_order
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
|
|
#[inline]
|
|
pub fn sort_by_cached_key<K, F>(&mut self, f: F)
|
|
where
|
|
F: FnMut(&T) -> K,
|
|
K: Ord,
|
|
{
|
|
// Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
|
|
macro_rules! sort_by_key {
|
|
($t:ty, $slice:ident, $f:ident) => {{
|
|
let mut indices: Vec<_> =
|
|
$slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
|
|
// The elements of `indices` are unique, as they are indexed, so any sort will be
|
|
// stable with respect to the original slice. We use `sort_unstable` here because
|
|
// it requires no memory allocation.
|
|
indices.sort_unstable();
|
|
for i in 0..$slice.len() {
|
|
let mut index = indices[i].1;
|
|
while (index as usize) < i {
|
|
index = indices[index as usize].1;
|
|
}
|
|
indices[i].1 = index;
|
|
$slice.swap(i, index as usize);
|
|
}
|
|
}};
|
|
}
|
|
|
|
let len = self.len();
|
|
if len < 2 {
|
|
return;
|
|
}
|
|
|
|
// Avoids binary-size usage in cases where the alignment doesn't work out to make this
|
|
// beneficial or on 32-bit platforms.
|
|
let is_using_u32_as_idx_type_helpful =
|
|
const { size_of::<(K, u32)>() < size_of::<(K, usize)>() };
|
|
|
|
// It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms
|
|
// of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4
|
|
// bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak
|
|
// ~262KB.
|
|
if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) {
|
|
return sort_by_key!(u32, self, f);
|
|
}
|
|
|
|
sort_by_key!(usize, self, f)
|
|
}
|
|
|
|
/// Copies `self` into a new `Vec`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s = [10, 40, 30];
|
|
/// let x = s.to_vec();
|
|
/// // Here, `s` and `x` can be modified independently.
|
|
/// ```
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[rustc_conversion_suggestion]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
pub fn to_vec(&self) -> Vec<T>
|
|
where
|
|
T: Clone,
|
|
{
|
|
self.to_vec_in(Global)
|
|
}
|
|
|
|
/// Copies `self` into a new `Vec` with an allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(allocator_api)]
|
|
///
|
|
/// use std::alloc::System;
|
|
///
|
|
/// let s = [10, 40, 30];
|
|
/// let x = s.to_vec_in(System);
|
|
/// // Here, `s` and `x` can be modified independently.
|
|
/// ```
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[inline]
|
|
#[unstable(feature = "allocator_api", issue = "32838")]
|
|
pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
|
|
where
|
|
T: Clone,
|
|
{
|
|
return T::to_vec(self, alloc);
|
|
|
|
trait ConvertVec {
|
|
fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
|
|
where
|
|
Self: Sized;
|
|
}
|
|
|
|
impl<T: Clone> ConvertVec for T {
|
|
#[inline]
|
|
default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
|
|
struct DropGuard<'a, T, A: Allocator> {
|
|
vec: &'a mut Vec<T, A>,
|
|
num_init: usize,
|
|
}
|
|
impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
|
|
#[inline]
|
|
fn drop(&mut self) {
|
|
// SAFETY:
|
|
// items were marked initialized in the loop below
|
|
unsafe {
|
|
self.vec.set_len(self.num_init);
|
|
}
|
|
}
|
|
}
|
|
let mut vec = Vec::with_capacity_in(s.len(), alloc);
|
|
let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
|
|
let slots = guard.vec.spare_capacity_mut();
|
|
// .take(slots.len()) is necessary for LLVM to remove bounds checks
|
|
// and has better codegen than zip.
|
|
for (i, b) in s.iter().enumerate().take(slots.len()) {
|
|
guard.num_init = i;
|
|
slots[i].write(b.clone());
|
|
}
|
|
core::mem::forget(guard);
|
|
// SAFETY:
|
|
// the vec was allocated and initialized above to at least this length.
|
|
unsafe {
|
|
vec.set_len(s.len());
|
|
}
|
|
vec
|
|
}
|
|
}
|
|
|
|
impl<T: Copy> ConvertVec for T {
|
|
#[inline]
|
|
fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
|
|
let mut v = Vec::with_capacity_in(s.len(), alloc);
|
|
// SAFETY:
|
|
// allocated above with the capacity of `s`, and initialize to `s.len()` in
|
|
// ptr::copy_to_non_overlapping below.
|
|
unsafe {
|
|
s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
|
|
v.set_len(s.len());
|
|
}
|
|
v
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Converts `self` into a vector without clones or allocation.
|
|
///
|
|
/// The resulting vector can be converted back into a box via
|
|
/// `Vec<T>`'s `into_boxed_slice` method.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let s: Box<[i32]> = Box::new([10, 40, 30]);
|
|
/// let x = s.into_vec();
|
|
/// // `s` cannot be used anymore because it has been converted into `x`.
|
|
///
|
|
/// assert_eq!(x, vec![10, 40, 30]);
|
|
/// ```
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
#[rustc_diagnostic_item = "slice_into_vec"]
|
|
pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
|
|
unsafe {
|
|
let len = self.len();
|
|
let (b, alloc) = Box::into_raw_with_allocator(self);
|
|
Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
|
|
}
|
|
}
|
|
|
|
/// Creates a vector by copying a slice `n` times.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This function will panic if the capacity would overflow.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
|
|
/// ```
|
|
///
|
|
/// A panic upon overflow:
|
|
///
|
|
/// ```should_panic
|
|
/// // this will panic at runtime
|
|
/// b"0123456789abcdef".repeat(usize::MAX);
|
|
/// ```
|
|
#[rustc_allow_incoherent_impl]
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[stable(feature = "repeat_generic_slice", since = "1.40.0")]
|
|
pub fn repeat(&self, n: usize) -> Vec<T>
|
|
where
|
|
T: Copy,
|
|
{
|
|
if n == 0 {
|
|
return Vec::new();
|
|
}
|
|
|
|
// If `n` is larger than zero, it can be split as
|
|
// `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
|
|
// `2^expn` is the number represented by the leftmost '1' bit of `n`,
|
|
// and `rem` is the remaining part of `n`.
|
|
|
|
// Using `Vec` to access `set_len()`.
|
|
let capacity = self.len().checked_mul(n).expect("capacity overflow");
|
|
let mut buf = Vec::with_capacity(capacity);
|
|
|
|
// `2^expn` repetition is done by doubling `buf` `expn`-times.
|
|
buf.extend(self);
|
|
{
|
|
let mut m = n >> 1;
|
|
// If `m > 0`, there are remaining bits up to the leftmost '1'.
|
|
while m > 0 {
|
|
// `buf.extend(buf)`:
|
|
unsafe {
|
|
ptr::copy_nonoverlapping::<T>(
|
|
buf.as_ptr(),
|
|
(buf.as_mut_ptr()).add(buf.len()),
|
|
buf.len(),
|
|
);
|
|
// `buf` has capacity of `self.len() * n`.
|
|
let buf_len = buf.len();
|
|
buf.set_len(buf_len * 2);
|
|
}
|
|
|
|
m >>= 1;
|
|
}
|
|
}
|
|
|
|
// `rem` (`= n - 2^expn`) repetition is done by copying
|
|
// first `rem` repetitions from `buf` itself.
|
|
let rem_len = capacity - buf.len(); // `self.len() * rem`
|
|
if rem_len > 0 {
|
|
// `buf.extend(buf[0 .. rem_len])`:
|
|
unsafe {
|
|
// This is non-overlapping since `2^expn > rem`.
|
|
ptr::copy_nonoverlapping::<T>(
|
|
buf.as_ptr(),
|
|
(buf.as_mut_ptr()).add(buf.len()),
|
|
rem_len,
|
|
);
|
|
// `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
|
|
buf.set_len(capacity);
|
|
}
|
|
}
|
|
buf
|
|
}
|
|
|
|
/// Flattens a slice of `T` into a single value `Self::Output`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!(["hello", "world"].concat(), "helloworld");
|
|
/// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
|
|
/// ```
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
|
|
where
|
|
Self: Concat<Item>,
|
|
{
|
|
Concat::concat(self)
|
|
}
|
|
|
|
/// Flattens a slice of `T` into a single value `Self::Output`, placing a
|
|
/// given separator between each.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// assert_eq!(["hello", "world"].join(" "), "hello world");
|
|
/// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
|
|
/// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
|
|
/// ```
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rename_connect_to_join", since = "1.3.0")]
|
|
pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
|
|
where
|
|
Self: Join<Separator>,
|
|
{
|
|
Join::join(self, sep)
|
|
}
|
|
|
|
/// Flattens a slice of `T` into a single value `Self::Output`, placing a
|
|
/// given separator between each.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # #![allow(deprecated)]
|
|
/// assert_eq!(["hello", "world"].connect(" "), "hello world");
|
|
/// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
|
|
/// ```
|
|
#[rustc_allow_incoherent_impl]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
|
|
pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
|
|
where
|
|
Self: Join<Separator>,
|
|
{
|
|
Join::join(self, sep)
|
|
}
|
|
}
|
|
|
|
impl [u8] {
|
|
/// Returns a vector containing a copy of this slice where each byte
|
|
/// is mapped to its ASCII upper case equivalent.
|
|
///
|
|
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To uppercase the value in-place, use [`make_ascii_uppercase`].
|
|
///
|
|
/// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[must_use = "this returns the uppercase bytes as a new Vec, \
|
|
without modifying the original"]
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[inline]
|
|
pub fn to_ascii_uppercase(&self) -> Vec<u8> {
|
|
let mut me = self.to_vec();
|
|
me.make_ascii_uppercase();
|
|
me
|
|
}
|
|
|
|
/// Returns a vector containing a copy of this slice where each byte
|
|
/// is mapped to its ASCII lower case equivalent.
|
|
///
|
|
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To lowercase the value in-place, use [`make_ascii_lowercase`].
|
|
///
|
|
/// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[rustc_allow_incoherent_impl]
|
|
#[must_use = "this returns the lowercase bytes as a new Vec, \
|
|
without modifying the original"]
|
|
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
|
|
#[inline]
|
|
pub fn to_ascii_lowercase(&self) -> Vec<u8> {
|
|
let mut me = self.to_vec();
|
|
me.make_ascii_lowercase();
|
|
me
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Extension traits for slices over specific kinds of data
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Helper trait for [`[T]::concat`](slice::concat).
|
|
///
|
|
/// Note: the `Item` type parameter is not used in this trait,
|
|
/// but it allows impls to be more generic.
|
|
/// Without it, we get this error:
|
|
///
|
|
/// ```error
|
|
/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
|
|
/// --> library/alloc/src/slice.rs:608:6
|
|
/// |
|
|
/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
|
|
/// | ^ unconstrained type parameter
|
|
/// ```
|
|
///
|
|
/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
|
|
/// such that multiple `T` types would apply:
|
|
///
|
|
/// ```
|
|
/// # #[allow(dead_code)]
|
|
/// pub struct Foo(Vec<u32>, Vec<String>);
|
|
///
|
|
/// impl std::borrow::Borrow<[u32]> for Foo {
|
|
/// fn borrow(&self) -> &[u32] { &self.0 }
|
|
/// }
|
|
///
|
|
/// impl std::borrow::Borrow<[String]> for Foo {
|
|
/// fn borrow(&self) -> &[String] { &self.1 }
|
|
/// }
|
|
/// ```
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
pub trait Concat<Item: ?Sized> {
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
/// The resulting type after concatenation
|
|
type Output;
|
|
|
|
/// Implementation of [`[T]::concat`](slice::concat)
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
fn concat(slice: &Self) -> Self::Output;
|
|
}
|
|
|
|
/// Helper trait for [`[T]::join`](slice::join)
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
pub trait Join<Separator> {
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
/// The resulting type after concatenation
|
|
type Output;
|
|
|
|
/// Implementation of [`[T]::join`](slice::join)
|
|
#[unstable(feature = "slice_concat_trait", issue = "27747")]
|
|
fn join(slice: &Self, sep: Separator) -> Self::Output;
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
|
|
impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
|
|
type Output = Vec<T>;
|
|
|
|
fn concat(slice: &Self) -> Vec<T> {
|
|
let size = slice.iter().map(|slice| slice.borrow().len()).sum();
|
|
let mut result = Vec::with_capacity(size);
|
|
for v in slice {
|
|
result.extend_from_slice(v.borrow())
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
|
|
impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
|
|
type Output = Vec<T>;
|
|
|
|
fn join(slice: &Self, sep: &T) -> Vec<T> {
|
|
let mut iter = slice.iter();
|
|
let first = match iter.next() {
|
|
Some(first) => first,
|
|
None => return vec![],
|
|
};
|
|
let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
|
|
let mut result = Vec::with_capacity(size);
|
|
result.extend_from_slice(first.borrow());
|
|
|
|
for v in iter {
|
|
result.push(sep.clone());
|
|
result.extend_from_slice(v.borrow())
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[unstable(feature = "slice_concat_ext", issue = "27747")]
|
|
impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
|
|
type Output = Vec<T>;
|
|
|
|
fn join(slice: &Self, sep: &[T]) -> Vec<T> {
|
|
let mut iter = slice.iter();
|
|
let first = match iter.next() {
|
|
Some(first) => first,
|
|
None => return vec![],
|
|
};
|
|
let size =
|
|
slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
|
|
let mut result = Vec::with_capacity(size);
|
|
result.extend_from_slice(first.borrow());
|
|
|
|
for v in iter {
|
|
result.extend_from_slice(sep);
|
|
result.extend_from_slice(v.borrow())
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Standard trait implementations for slices
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
|
|
fn borrow(&self) -> &[T] {
|
|
&self[..]
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
|
|
fn borrow_mut(&mut self) -> &mut [T] {
|
|
&mut self[..]
|
|
}
|
|
}
|
|
|
|
// Specializable trait for implementing ToOwned::clone_into. This is
|
|
// public in the crate and has the Allocator parameter so that
|
|
// vec::clone_from use it too.
|
|
#[cfg(not(no_global_oom_handling))]
|
|
pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
|
|
fn clone_into(&self, target: &mut Vec<T, A>);
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
|
|
default fn clone_into(&self, target: &mut Vec<T, A>) {
|
|
// drop anything in target that will not be overwritten
|
|
target.truncate(self.len());
|
|
|
|
// target.len <= self.len due to the truncate above, so the
|
|
// slices here are always in-bounds.
|
|
let (init, tail) = self.split_at(target.len());
|
|
|
|
// reuse the contained values' allocations/resources.
|
|
target.clone_from_slice(init);
|
|
target.extend_from_slice(tail);
|
|
}
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
|
|
fn clone_into(&self, target: &mut Vec<T, A>) {
|
|
target.clear();
|
|
target.extend_from_slice(self);
|
|
}
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<T: Clone> ToOwned for [T] {
|
|
type Owned = Vec<T>;
|
|
|
|
fn to_owned(&self) -> Vec<T> {
|
|
self.to_vec()
|
|
}
|
|
|
|
fn clone_into(&self, target: &mut Vec<T>) {
|
|
SpecCloneIntoVec::clone_into(self, target);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sorting
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[inline]
|
|
#[cfg(not(no_global_oom_handling))]
|
|
fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
|
|
where
|
|
F: FnMut(&T, &T) -> bool,
|
|
{
|
|
sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less);
|
|
}
|
|
|
|
#[cfg(not(no_global_oom_handling))]
|
|
#[unstable(issue = "none", feature = "std_internals")]
|
|
impl<T> sort::stable::BufGuard<T> for Vec<T> {
|
|
fn with_capacity(capacity: usize) -> Self {
|
|
Vec::with_capacity(capacity)
|
|
}
|
|
|
|
fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
|
|
self.spare_capacity_mut()
|
|
}
|
|
}
|