mirror of
				https://github.com/rust-lang/rust.git
				synced 2025-10-30 20:44:34 +00:00 
			
		
		
		
	 d010809c8c
			
		
	
	
		d010809c8c
		
	
	
	
	
		
			
			Backports LLVM commit:
    [APFloat] convert SNaN to QNaN in convert() and raise Invalid signal
149f5b573c
SNaN to QNaN conversion also matches what my Intel x86_64 hardware does.
		
	
			
		
			
				
	
	
		
			2758 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			2758 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
 | |
| use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd};
 | |
| 
 | |
| use core::cmp::{self, Ordering};
 | |
| use core::convert::TryFrom;
 | |
| use core::fmt::{self, Write};
 | |
| use core::marker::PhantomData;
 | |
| use core::mem;
 | |
| use core::ops::Neg;
 | |
| use smallvec::{smallvec, SmallVec};
 | |
| 
 | |
| #[must_use]
 | |
| pub struct IeeeFloat<S> {
 | |
|     /// Absolute significand value (including the integer bit).
 | |
|     sig: [Limb; 1],
 | |
| 
 | |
|     /// The signed unbiased exponent of the value.
 | |
|     exp: ExpInt,
 | |
| 
 | |
|     /// What kind of floating point number this is.
 | |
|     category: Category,
 | |
| 
 | |
|     /// Sign bit of the number.
 | |
|     sign: bool,
 | |
| 
 | |
|     marker: PhantomData<S>,
 | |
| }
 | |
| 
 | |
| /// Fundamental unit of big integer arithmetic, but also
 | |
| /// large to store the largest significands by itself.
 | |
| type Limb = u128;
 | |
| const LIMB_BITS: usize = 128;
 | |
| fn limbs_for_bits(bits: usize) -> usize {
 | |
|     (bits + LIMB_BITS - 1) / LIMB_BITS
 | |
| }
 | |
| 
 | |
| /// Enum that represents what fraction of the LSB truncated bits of an fp number
 | |
| /// represent.
 | |
| ///
 | |
| /// This essentially combines the roles of guard and sticky bits.
 | |
| #[must_use]
 | |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)]
 | |
| enum Loss {
 | |
|     // Example of truncated bits:
 | |
|     ExactlyZero,  // 000000
 | |
|     LessThanHalf, // 0xxxxx  x's not all zero
 | |
|     ExactlyHalf,  // 100000
 | |
|     MoreThanHalf, // 1xxxxx  x's not all zero
 | |
| }
 | |
| 
 | |
| /// Represents floating point arithmetic semantics.
 | |
| pub trait Semantics: Sized {
 | |
|     /// Total number of bits in the in-memory format.
 | |
|     const BITS: usize;
 | |
| 
 | |
|     /// Number of bits in the significand. This includes the integer bit.
 | |
|     const PRECISION: usize;
 | |
| 
 | |
|     /// The largest E such that 2<sup>E</sup> is representable; this matches the
 | |
|     /// definition of IEEE 754.
 | |
|     const MAX_EXP: ExpInt;
 | |
| 
 | |
|     /// The smallest E such that 2<sup>E</sup> is a normalized number; this
 | |
|     /// matches the definition of IEEE 754.
 | |
|     const MIN_EXP: ExpInt = -Self::MAX_EXP + 1;
 | |
| 
 | |
|     /// The significand bit that marks NaN as quiet.
 | |
|     const QNAN_BIT: usize = Self::PRECISION - 2;
 | |
| 
 | |
|     /// The significand bitpattern to mark a NaN as quiet.
 | |
|     /// NOTE: for X87DoubleExtended we need to set two bits instead of 2.
 | |
|     const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT;
 | |
| 
 | |
|     fn from_bits(bits: u128) -> IeeeFloat<Self> {
 | |
|         assert!(Self::BITS > Self::PRECISION);
 | |
| 
 | |
|         let sign = bits & (1 << (Self::BITS - 1));
 | |
|         let exponent = (bits & !sign) >> (Self::PRECISION - 1);
 | |
|         let mut r = IeeeFloat {
 | |
|             sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
 | |
|             // Convert the exponent from its bias representation to a signed integer.
 | |
|             exp: (exponent as ExpInt) - Self::MAX_EXP,
 | |
|             category: Category::Zero,
 | |
|             sign: sign != 0,
 | |
|             marker: PhantomData,
 | |
|         };
 | |
| 
 | |
|         if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
 | |
|             // Exponent, significand meaningless.
 | |
|             r.category = Category::Zero;
 | |
|         } else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] {
 | |
|             // Exponent, significand meaningless.
 | |
|             r.category = Category::Infinity;
 | |
|         } else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] {
 | |
|             // Sign, exponent, significand meaningless.
 | |
|             r.category = Category::NaN;
 | |
|         } else {
 | |
|             r.category = Category::Normal;
 | |
|             if r.exp == Self::MIN_EXP - 1 {
 | |
|                 // Denormal.
 | |
|                 r.exp = Self::MIN_EXP;
 | |
|             } else {
 | |
|                 // Set integer bit.
 | |
|                 sig::set_bit(&mut r.sig, Self::PRECISION - 1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         r
 | |
|     }
 | |
| 
 | |
|     fn to_bits(x: IeeeFloat<Self>) -> u128 {
 | |
|         assert!(Self::BITS > Self::PRECISION);
 | |
| 
 | |
|         // Split integer bit from significand.
 | |
|         let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
 | |
|         let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1);
 | |
|         let exponent = match x.category {
 | |
|             Category::Normal => {
 | |
|                 if x.exp == Self::MIN_EXP && !integer_bit {
 | |
|                     // Denormal.
 | |
|                     Self::MIN_EXP - 1
 | |
|                 } else {
 | |
|                     x.exp
 | |
|                 }
 | |
|             }
 | |
|             Category::Zero => {
 | |
|                 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
 | |
|                 significand = 0;
 | |
|                 Self::MIN_EXP - 1
 | |
|             }
 | |
|             Category::Infinity => {
 | |
|                 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
 | |
|                 significand = 0;
 | |
|                 Self::MAX_EXP + 1
 | |
|             }
 | |
|             Category::NaN => Self::MAX_EXP + 1,
 | |
|         };
 | |
| 
 | |
|         // Convert the exponent from a signed integer to its bias representation.
 | |
|         let exponent = (exponent + Self::MAX_EXP) as u128;
 | |
| 
 | |
|         ((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S> Copy for IeeeFloat<S> {}
 | |
| impl<S> Clone for IeeeFloat<S> {
 | |
|     fn clone(&self) -> Self {
 | |
|         *self
 | |
|     }
 | |
| }
 | |
| 
 | |
| macro_rules! ieee_semantics {
 | |
|     ($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => {
 | |
|         $(pub struct $sem;)*
 | |
|         $(pub type $name = IeeeFloat<$sem>;)*
 | |
|         $(impl Semantics for $sem {
 | |
|             const BITS: usize = $bits;
 | |
|             const PRECISION: usize = ($bits - 1 - $exp_bits) + 1;
 | |
|             const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1;
 | |
|         })*
 | |
|     }
 | |
| }
 | |
| 
 | |
| ieee_semantics! {
 | |
|     Half = HalfS(16:5),
 | |
|     Single = SingleS(32:8),
 | |
|     Double = DoubleS(64:11),
 | |
|     Quad = QuadS(128:15)
 | |
| }
 | |
| 
 | |
| pub struct X87DoubleExtendedS;
 | |
| pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>;
 | |
| impl Semantics for X87DoubleExtendedS {
 | |
|     const BITS: usize = 80;
 | |
|     const PRECISION: usize = 64;
 | |
|     const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1;
 | |
| 
 | |
|     /// For x87 extended precision, we want to make a NaN, not a
 | |
|     /// pseudo-NaN. Maybe we should expose the ability to make
 | |
|     /// pseudo-NaNs?
 | |
|     const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT;
 | |
| 
 | |
|     /// Integer bit is explicit in this format. Intel hardware (387 and later)
 | |
|     /// does not support these bit patterns:
 | |
|     ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
 | |
|     ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
 | |
|     ///  exponent = 0, integer bit 1 ("pseudodenormal")
 | |
|     ///  exponent != 0 nor all 1's, integer bit 0 ("unnormal")
 | |
|     /// At the moment, the first two are treated as NaNs, the second two as Normal.
 | |
|     fn from_bits(bits: u128) -> IeeeFloat<Self> {
 | |
|         let sign = bits & (1 << (Self::BITS - 1));
 | |
|         let exponent = (bits & !sign) >> Self::PRECISION;
 | |
|         let mut r = IeeeFloat {
 | |
|             sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
 | |
|             // Convert the exponent from its bias representation to a signed integer.
 | |
|             exp: (exponent as ExpInt) - Self::MAX_EXP,
 | |
|             category: Category::Zero,
 | |
|             sign: sign != 0,
 | |
|             marker: PhantomData,
 | |
|         };
 | |
| 
 | |
|         if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
 | |
|             // Exponent, significand meaningless.
 | |
|             r.category = Category::Zero;
 | |
|         } else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] {
 | |
|             // Exponent, significand meaningless.
 | |
|             r.category = Category::Infinity;
 | |
|         } else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] {
 | |
|             // Sign, exponent, significand meaningless.
 | |
|             r.category = Category::NaN;
 | |
|         } else {
 | |
|             r.category = Category::Normal;
 | |
|             if r.exp == Self::MIN_EXP - 1 {
 | |
|                 // Denormal.
 | |
|                 r.exp = Self::MIN_EXP;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         r
 | |
|     }
 | |
| 
 | |
|     fn to_bits(x: IeeeFloat<Self>) -> u128 {
 | |
|         // Get integer bit from significand.
 | |
|         let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
 | |
|         let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1);
 | |
|         let exponent = match x.category {
 | |
|             Category::Normal => {
 | |
|                 if x.exp == Self::MIN_EXP && !integer_bit {
 | |
|                     // Denormal.
 | |
|                     Self::MIN_EXP - 1
 | |
|                 } else {
 | |
|                     x.exp
 | |
|                 }
 | |
|             }
 | |
|             Category::Zero => {
 | |
|                 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
 | |
|                 significand = 0;
 | |
|                 Self::MIN_EXP - 1
 | |
|             }
 | |
|             Category::Infinity => {
 | |
|                 // FIXME(eddyb) Maybe we should guarantee an invariant instead?
 | |
|                 significand = 1 << (Self::PRECISION - 1);
 | |
|                 Self::MAX_EXP + 1
 | |
|             }
 | |
|             Category::NaN => Self::MAX_EXP + 1,
 | |
|         };
 | |
| 
 | |
|         // Convert the exponent from a signed integer to its bias representation.
 | |
|         let exponent = (exponent + Self::MAX_EXP) as u128;
 | |
| 
 | |
|         ((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand
 | |
|     }
 | |
| }
 | |
| 
 | |
| float_common_impls!(IeeeFloat<S>);
 | |
| 
 | |
| impl<S: Semantics> PartialEq for IeeeFloat<S> {
 | |
|     fn eq(&self, rhs: &Self) -> bool {
 | |
|         self.partial_cmp(rhs) == Some(Ordering::Equal)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S: Semantics> PartialOrd for IeeeFloat<S> {
 | |
|     fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
 | |
|         match (self.category, rhs.category) {
 | |
|             (Category::NaN, _) | (_, Category::NaN) => None,
 | |
| 
 | |
|             (Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))),
 | |
| 
 | |
|             (Category::Zero, Category::Zero) => Some(Ordering::Equal),
 | |
| 
 | |
|             (Category::Infinity, _) | (Category::Normal, Category::Zero) => {
 | |
|                 Some((!self.sign).cmp(&self.sign))
 | |
|             }
 | |
| 
 | |
|             (_, Category::Infinity) | (Category::Zero, Category::Normal) => {
 | |
|                 Some(rhs.sign.cmp(&(!rhs.sign)))
 | |
|             }
 | |
| 
 | |
|             (Category::Normal, Category::Normal) => {
 | |
|                 // Two normal numbers. Do they have the same sign?
 | |
|                 Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| {
 | |
|                     // Compare absolute values; invert result if negative.
 | |
|                     let result = self.cmp_abs_normal(*rhs);
 | |
| 
 | |
|                     if self.sign { result.reverse() } else { result }
 | |
|                 }))
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S> Neg for IeeeFloat<S> {
 | |
|     type Output = Self;
 | |
|     fn neg(mut self) -> Self {
 | |
|         self.sign = !self.sign;
 | |
|         self
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Prints this value as a decimal string.
 | |
| ///
 | |
| /// \param precision The maximum number of digits of
 | |
| ///   precision to output. If there are fewer digits available,
 | |
| ///   zero padding will not be used unless the value is
 | |
| ///   integral and small enough to be expressed in
 | |
| ///   precision digits. 0 means to use the natural
 | |
| ///   precision of the number.
 | |
| /// \param width The maximum number of zeros to
 | |
| ///   consider inserting before falling back to scientific
 | |
| ///   notation. 0 means to always use scientific notation.
 | |
| ///
 | |
| /// \param alternate Indicate whether to remove the trailing zero in
 | |
| ///   fraction part or not. Also setting this parameter to true forces
 | |
| ///   producing of output more similar to default printf behavior.
 | |
| ///   Specifically the lower e is used as exponent delimiter and exponent
 | |
| ///   always contains no less than two digits.
 | |
| ///
 | |
| /// Number       precision    width      Result
 | |
| /// ------       ---------    -----      ------
 | |
| /// 1.01E+4              5        2       10100
 | |
| /// 1.01E+4              4        2       1.01E+4
 | |
| /// 1.01E+4              5        1       1.01E+4
 | |
| /// 1.01E-2              5        2       0.0101
 | |
| /// 1.01E-2              4        2       0.0101
 | |
| /// 1.01E-2              4        1       1.01E-2
 | |
| impl<S: Semantics> fmt::Display for IeeeFloat<S> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         let width = f.width().unwrap_or(3);
 | |
|         let alternate = f.alternate();
 | |
| 
 | |
|         match self.category {
 | |
|             Category::Infinity => {
 | |
|                 if self.sign {
 | |
|                     return f.write_str("-Inf");
 | |
|                 } else {
 | |
|                     return f.write_str("+Inf");
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             Category::NaN => return f.write_str("NaN"),
 | |
| 
 | |
|             Category::Zero => {
 | |
|                 if self.sign {
 | |
|                     f.write_char('-')?;
 | |
|                 }
 | |
| 
 | |
|                 if width == 0 {
 | |
|                     if alternate {
 | |
|                         f.write_str("0.0")?;
 | |
|                         if let Some(n) = f.precision() {
 | |
|                             for _ in 1..n {
 | |
|                                 f.write_char('0')?;
 | |
|                             }
 | |
|                         }
 | |
|                         f.write_str("e+00")?;
 | |
|                     } else {
 | |
|                         f.write_str("0.0E+0")?;
 | |
|                     }
 | |
|                 } else {
 | |
|                     f.write_char('0')?;
 | |
|                 }
 | |
|                 return Ok(());
 | |
|             }
 | |
| 
 | |
|             Category::Normal => {}
 | |
|         }
 | |
| 
 | |
|         if self.sign {
 | |
|             f.write_char('-')?;
 | |
|         }
 | |
| 
 | |
|         // We use enough digits so the number can be round-tripped back to an
 | |
|         // APFloat. The formula comes from "How to Print Floating-Point Numbers
 | |
|         // Accurately" by Steele and White.
 | |
|         // FIXME: Using a formula based purely on the precision is conservative;
 | |
|         // we can print fewer digits depending on the actual value being printed.
 | |
| 
 | |
|         // precision = 2 + floor(S::PRECISION / lg_2(10))
 | |
|         let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196);
 | |
| 
 | |
|         // Decompose the number into an APInt and an exponent.
 | |
|         let mut exp = self.exp - (S::PRECISION as ExpInt - 1);
 | |
|         let mut sig = vec![self.sig[0]];
 | |
| 
 | |
|         // Ignore trailing binary zeros.
 | |
|         let trailing_zeros = sig[0].trailing_zeros();
 | |
|         let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize);
 | |
| 
 | |
|         // Change the exponent from 2^e to 10^e.
 | |
|         if exp == 0 {
 | |
|             // Nothing to do.
 | |
|         } else if exp > 0 {
 | |
|             // Just shift left.
 | |
|             let shift = exp as usize;
 | |
|             sig.resize(limbs_for_bits(S::PRECISION + shift), 0);
 | |
|             sig::shift_left(&mut sig, &mut exp, shift);
 | |
|         } else {
 | |
|             // exp < 0
 | |
|             let mut texp = -exp as usize;
 | |
| 
 | |
|             // We transform this using the identity:
 | |
|             //   (N)(2^-e) == (N)(5^e)(10^-e)
 | |
| 
 | |
|             // Multiply significand by 5^e.
 | |
|             //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
 | |
|             let mut sig_scratch = vec![];
 | |
|             let mut p5 = vec![];
 | |
|             let mut p5_scratch = vec![];
 | |
|             while texp != 0 {
 | |
|                 if p5.is_empty() {
 | |
|                     p5.push(5);
 | |
|                 } else {
 | |
|                     p5_scratch.resize(p5.len() * 2, 0);
 | |
|                     let _: Loss =
 | |
|                         sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
 | |
|                     while p5_scratch.last() == Some(&0) {
 | |
|                         p5_scratch.pop();
 | |
|                     }
 | |
|                     mem::swap(&mut p5, &mut p5_scratch);
 | |
|                 }
 | |
|                 if texp & 1 != 0 {
 | |
|                     sig_scratch.resize(sig.len() + p5.len(), 0);
 | |
|                     let _: Loss = sig::mul(
 | |
|                         &mut sig_scratch,
 | |
|                         &mut 0,
 | |
|                         &sig,
 | |
|                         &p5,
 | |
|                         (sig.len() + p5.len()) * LIMB_BITS,
 | |
|                     );
 | |
|                     while sig_scratch.last() == Some(&0) {
 | |
|                         sig_scratch.pop();
 | |
|                     }
 | |
|                     mem::swap(&mut sig, &mut sig_scratch);
 | |
|                 }
 | |
|                 texp >>= 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Fill the buffer.
 | |
|         let mut buffer = vec![];
 | |
| 
 | |
|         // Ignore digits from the significand until it is no more
 | |
|         // precise than is required for the desired precision.
 | |
|         // 196/59 is a very slight overestimate of lg_2(10).
 | |
|         let required = (precision * 196 + 58) / 59;
 | |
|         let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196;
 | |
|         let mut in_trail = true;
 | |
|         while !sig.is_empty() {
 | |
|             // Perform short division by 10 to extract the rightmost digit.
 | |
|             // rem <- sig % 10
 | |
|             // sig <- sig / 10
 | |
|             let mut rem = 0;
 | |
| 
 | |
|             // Use 64-bit division and remainder, with 32-bit chunks from sig.
 | |
|             sig::each_chunk(&mut sig, 32, |chunk| {
 | |
|                 let chunk = chunk as u32;
 | |
|                 let combined = ((rem as u64) << 32) | (chunk as u64);
 | |
|                 rem = (combined % 10) as u8;
 | |
|                 (combined / 10) as u32 as Limb
 | |
|             });
 | |
| 
 | |
|             // Reduce the sigificand to avoid wasting time dividing 0's.
 | |
|             while sig.last() == Some(&0) {
 | |
|                 sig.pop();
 | |
|             }
 | |
| 
 | |
|             let digit = rem;
 | |
| 
 | |
|             // Ignore digits we don't need.
 | |
|             if discard_digits > 0 {
 | |
|                 discard_digits -= 1;
 | |
|                 exp += 1;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // Drop trailing zeros.
 | |
|             if in_trail && digit == 0 {
 | |
|                 exp += 1;
 | |
|             } else {
 | |
|                 in_trail = false;
 | |
|                 buffer.push(b'0' + digit);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         assert!(!buffer.is_empty(), "no characters in buffer!");
 | |
| 
 | |
|         // Drop down to precision.
 | |
|         // FIXME: don't do more precise calculations above than are required.
 | |
|         if buffer.len() > precision {
 | |
|             // The most significant figures are the last ones in the buffer.
 | |
|             let mut first_sig = buffer.len() - precision;
 | |
| 
 | |
|             // Round.
 | |
|             // FIXME: this probably shouldn't use 'round half up'.
 | |
| 
 | |
|             // Rounding down is just a truncation, except we also want to drop
 | |
|             // trailing zeros from the new result.
 | |
|             if buffer[first_sig - 1] < b'5' {
 | |
|                 while first_sig < buffer.len() && buffer[first_sig] == b'0' {
 | |
|                     first_sig += 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 // Rounding up requires a decimal add-with-carry. If we continue
 | |
|                 // the carry, the newly-introduced zeros will just be truncated.
 | |
|                 for x in &mut buffer[first_sig..] {
 | |
|                     if *x == b'9' {
 | |
|                         first_sig += 1;
 | |
|                     } else {
 | |
|                         *x += 1;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             exp += first_sig as ExpInt;
 | |
|             buffer.drain(..first_sig);
 | |
| 
 | |
|             // If we carried through, we have exactly one digit of precision.
 | |
|             if buffer.is_empty() {
 | |
|                 buffer.push(b'1');
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         let digits = buffer.len();
 | |
| 
 | |
|         // Check whether we should use scientific notation.
 | |
|         let scientific = if width == 0 {
 | |
|             true
 | |
|         } else if exp >= 0 {
 | |
|             // 765e3 --> 765000
 | |
|             //              ^^^
 | |
|             // But we shouldn't make the number look more precise than it is.
 | |
|             exp as usize > width || digits + exp as usize > precision
 | |
|         } else {
 | |
|             // Power of the most significant digit.
 | |
|             let msd = exp + (digits - 1) as ExpInt;
 | |
|             if msd >= 0 {
 | |
|                 // 765e-2 == 7.65
 | |
|                 false
 | |
|             } else {
 | |
|                 // 765e-5 == 0.00765
 | |
|                 //           ^ ^^
 | |
|                 -msd as usize > width
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // Scientific formatting is pretty straightforward.
 | |
|         if scientific {
 | |
|             exp += digits as ExpInt - 1;
 | |
| 
 | |
|             f.write_char(buffer[digits - 1] as char)?;
 | |
|             f.write_char('.')?;
 | |
|             let truncate_zero = !alternate;
 | |
|             if digits == 1 && truncate_zero {
 | |
|                 f.write_char('0')?;
 | |
|             } else {
 | |
|                 for &d in buffer[..digits - 1].iter().rev() {
 | |
|                     f.write_char(d as char)?;
 | |
|                 }
 | |
|             }
 | |
|             // Fill with zeros up to precision.
 | |
|             if !truncate_zero && precision > digits - 1 {
 | |
|                 for _ in 0..=precision - digits {
 | |
|                     f.write_char('0')?;
 | |
|                 }
 | |
|             }
 | |
|             // For alternate we use lower 'e'.
 | |
|             f.write_char(if alternate { 'e' } else { 'E' })?;
 | |
| 
 | |
|             // Exponent always at least two digits if we do not truncate zeros.
 | |
|             if truncate_zero {
 | |
|                 write!(f, "{:+}", exp)?;
 | |
|             } else {
 | |
|                 write!(f, "{:+03}", exp)?;
 | |
|             }
 | |
| 
 | |
|             return Ok(());
 | |
|         }
 | |
| 
 | |
|         // Non-scientific, positive exponents.
 | |
|         if exp >= 0 {
 | |
|             for &d in buffer.iter().rev() {
 | |
|                 f.write_char(d as char)?;
 | |
|             }
 | |
|             for _ in 0..exp {
 | |
|                 f.write_char('0')?;
 | |
|             }
 | |
|             return Ok(());
 | |
|         }
 | |
| 
 | |
|         // Non-scientific, negative exponents.
 | |
|         let unit_place = -exp as usize;
 | |
|         if unit_place < digits {
 | |
|             for &d in buffer[unit_place..].iter().rev() {
 | |
|                 f.write_char(d as char)?;
 | |
|             }
 | |
|             f.write_char('.')?;
 | |
|             for &d in buffer[..unit_place].iter().rev() {
 | |
|                 f.write_char(d as char)?;
 | |
|             }
 | |
|         } else {
 | |
|             f.write_str("0.")?;
 | |
|             for _ in digits..unit_place {
 | |
|                 f.write_char('0')?;
 | |
|             }
 | |
|             for &d in buffer.iter().rev() {
 | |
|                 f.write_char(d as char)?;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S: Semantics> fmt::Debug for IeeeFloat<S> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         write!(
 | |
|             f,
 | |
|             "{}({:?} | {}{:?} * 2^{})",
 | |
|             self,
 | |
|             self.category,
 | |
|             if self.sign { "-" } else { "+" },
 | |
|             self.sig,
 | |
|             self.exp
 | |
|         )
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S: Semantics> Float for IeeeFloat<S> {
 | |
|     const BITS: usize = S::BITS;
 | |
|     const PRECISION: usize = S::PRECISION;
 | |
|     const MAX_EXP: ExpInt = S::MAX_EXP;
 | |
|     const MIN_EXP: ExpInt = S::MIN_EXP;
 | |
| 
 | |
|     const ZERO: Self = IeeeFloat {
 | |
|         sig: [0],
 | |
|         exp: S::MIN_EXP - 1,
 | |
|         category: Category::Zero,
 | |
|         sign: false,
 | |
|         marker: PhantomData,
 | |
|     };
 | |
| 
 | |
|     const INFINITY: Self = IeeeFloat {
 | |
|         sig: [0],
 | |
|         exp: S::MAX_EXP + 1,
 | |
|         category: Category::Infinity,
 | |
|         sign: false,
 | |
|         marker: PhantomData,
 | |
|     };
 | |
| 
 | |
|     // FIXME(eddyb) remove when qnan becomes const fn.
 | |
|     const NAN: Self = IeeeFloat {
 | |
|         sig: [S::QNAN_SIGNIFICAND],
 | |
|         exp: S::MAX_EXP + 1,
 | |
|         category: Category::NaN,
 | |
|         sign: false,
 | |
|         marker: PhantomData,
 | |
|     };
 | |
| 
 | |
|     fn qnan(payload: Option<u128>) -> Self {
 | |
|         IeeeFloat {
 | |
|             sig: [S::QNAN_SIGNIFICAND
 | |
|                 | payload.map_or(0, |payload| {
 | |
|                     // Zero out the excess bits of the significand.
 | |
|                     payload & ((1 << S::QNAN_BIT) - 1)
 | |
|                 })],
 | |
|             exp: S::MAX_EXP + 1,
 | |
|             category: Category::NaN,
 | |
|             sign: false,
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn snan(payload: Option<u128>) -> Self {
 | |
|         let mut snan = Self::qnan(payload);
 | |
| 
 | |
|         // We always have to clear the QNaN bit to make it an SNaN.
 | |
|         sig::clear_bit(&mut snan.sig, S::QNAN_BIT);
 | |
| 
 | |
|         // If there are no bits set in the payload, we have to set
 | |
|         // *something* to make it a NaN instead of an infinity;
 | |
|         // conventionally, this is the next bit down from the QNaN bit.
 | |
|         if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 {
 | |
|             sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1);
 | |
|         }
 | |
| 
 | |
|         snan
 | |
|     }
 | |
| 
 | |
|     fn largest() -> Self {
 | |
|         // We want (in interchange format):
 | |
|         //   exponent = 1..10
 | |
|         //   significand = 1..1
 | |
|         IeeeFloat {
 | |
|             sig: [(1 << S::PRECISION) - 1],
 | |
|             exp: S::MAX_EXP,
 | |
|             category: Category::Normal,
 | |
|             sign: false,
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // We want (in interchange format):
 | |
|     //   exponent = 0..0
 | |
|     //   significand = 0..01
 | |
|     const SMALLEST: Self = IeeeFloat {
 | |
|         sig: [1],
 | |
|         exp: S::MIN_EXP,
 | |
|         category: Category::Normal,
 | |
|         sign: false,
 | |
|         marker: PhantomData,
 | |
|     };
 | |
| 
 | |
|     fn smallest_normalized() -> Self {
 | |
|         // We want (in interchange format):
 | |
|         //   exponent = 0..0
 | |
|         //   significand = 10..0
 | |
|         IeeeFloat {
 | |
|             sig: [1 << (S::PRECISION - 1)],
 | |
|             exp: S::MIN_EXP,
 | |
|             category: Category::Normal,
 | |
|             sign: false,
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
 | |
|         let status = match (self.category, rhs.category) {
 | |
|             (Category::Infinity, Category::Infinity) => {
 | |
|                 // Differently signed infinities can only be validly
 | |
|                 // subtracted.
 | |
|                 if self.sign != rhs.sign {
 | |
|                     self = Self::NAN;
 | |
|                     Status::INVALID_OP
 | |
|                 } else {
 | |
|                     Status::OK
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Sign may depend on rounding mode; handled below.
 | |
|             (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
 | |
|                 Status::OK
 | |
|             }
 | |
| 
 | |
|             (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => {
 | |
|                 self = rhs;
 | |
|                 Status::OK
 | |
|             }
 | |
| 
 | |
|             // This return code means it was not a simple case.
 | |
|             (Category::Normal, Category::Normal) => {
 | |
|                 let loss = sig::add_or_sub(
 | |
|                     &mut self.sig,
 | |
|                     &mut self.exp,
 | |
|                     &mut self.sign,
 | |
|                     &mut [rhs.sig[0]],
 | |
|                     rhs.exp,
 | |
|                     rhs.sign,
 | |
|                 );
 | |
|                 let status;
 | |
|                 self = unpack!(status=, self.normalize(round, loss));
 | |
| 
 | |
|                 // Can only be zero if we lost no fraction.
 | |
|                 assert!(self.category != Category::Zero || loss == Loss::ExactlyZero);
 | |
| 
 | |
|                 status
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|         // positive zero unless rounding to minus infinity, except that
 | |
|         // adding two like-signed zeroes gives that zero.
 | |
|         if self.category == Category::Zero
 | |
|             && (rhs.category != Category::Zero || self.sign != rhs.sign)
 | |
|         {
 | |
|             self.sign = round == Round::TowardNegative;
 | |
|         }
 | |
| 
 | |
|         status.and(self)
 | |
|     }
 | |
| 
 | |
|     fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
 | |
|         self.sign ^= rhs.sign;
 | |
| 
 | |
|         match (self.category, rhs.category) {
 | |
|             (Category::NaN, _) => {
 | |
|                 self.sign = false;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (_, Category::NaN) => {
 | |
|                 self.sign = false;
 | |
|                 self.category = Category::NaN;
 | |
|                 self.sig = rhs.sig;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
 | |
|                 Status::INVALID_OP.and(Self::NAN)
 | |
|             }
 | |
| 
 | |
|             (_, Category::Infinity) | (Category::Infinity, _) => {
 | |
|                 self.category = Category::Infinity;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Zero, _) | (_, Category::Zero) => {
 | |
|                 self.category = Category::Zero;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Normal, Category::Normal) => {
 | |
|                 self.exp += rhs.exp;
 | |
|                 let mut wide_sig = [0; 2];
 | |
|                 let loss =
 | |
|                     sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION);
 | |
|                 self.sig = [wide_sig[0]];
 | |
|                 let mut status;
 | |
|                 self = unpack!(status=, self.normalize(round, loss));
 | |
|                 if loss != Loss::ExactlyZero {
 | |
|                     status |= Status::INEXACT;
 | |
|                 }
 | |
|                 status.and(self)
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
 | |
|         // If and only if all arguments are normal do we need to do an
 | |
|         // extended-precision calculation.
 | |
|         if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() {
 | |
|             let mut status;
 | |
|             self = unpack!(status=, self.mul_r(multiplicand, round));
 | |
| 
 | |
|             // FS can only be Status::OK or Status::INVALID_OP. There is no more work
 | |
|             // to do in the latter case. The IEEE-754R standard says it is
 | |
|             // implementation-defined in this case whether, if ADDEND is a
 | |
|             // quiet NaN, we raise invalid op; this implementation does so.
 | |
|             //
 | |
|             // If we need to do the addition we can do so with normal
 | |
|             // precision.
 | |
|             if status == Status::OK {
 | |
|                 self = unpack!(status=, self.add_r(addend, round));
 | |
|             }
 | |
|             return status.and(self);
 | |
|         }
 | |
| 
 | |
|         // Post-multiplication sign, before addition.
 | |
|         self.sign ^= multiplicand.sign;
 | |
| 
 | |
|         // Allocate space for twice as many bits as the original significand, plus one
 | |
|         // extra bit for the addition to overflow into.
 | |
|         assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2);
 | |
|         let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]);
 | |
| 
 | |
|         let mut loss = Loss::ExactlyZero;
 | |
|         let mut omsb = sig::omsb(&wide_sig);
 | |
|         self.exp += multiplicand.exp;
 | |
| 
 | |
|         // Assume the operands involved in the multiplication are single-precision
 | |
|         // FP, and the two multiplicants are:
 | |
|         //     lhs = a23 . a22 ... a0 * 2^e1
 | |
|         //     rhs = b23 . b22 ... b0 * 2^e2
 | |
|         // the result of multiplication is:
 | |
|         //     lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
 | |
|         // Note that there are three significant bits at the left-hand side of the
 | |
|         // radix point: two for the multiplication, and an overflow bit for the
 | |
|         // addition (that will always be zero at this point). Move the radix point
 | |
|         // toward left by two bits, and adjust exponent accordingly.
 | |
|         self.exp += 2;
 | |
| 
 | |
|         if addend.is_non_zero() {
 | |
|             // Normalize our MSB to one below the top bit to allow for overflow.
 | |
|             let ext_precision = 2 * S::PRECISION + 1;
 | |
|             if omsb != ext_precision - 1 {
 | |
|                 assert!(ext_precision > omsb);
 | |
|                 sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb);
 | |
|             }
 | |
| 
 | |
|             // The intermediate result of the multiplication has "2 * S::PRECISION"
 | |
|             // significant bit; adjust the addend to be consistent with mul result.
 | |
|             let mut ext_addend_sig = [addend.sig[0], 0];
 | |
| 
 | |
|             // Extend the addend significand to ext_precision - 1. This guarantees
 | |
|             // that the high bit of the significand is zero (same as wide_sig),
 | |
|             // so the addition will overflow (if it does overflow at all) into the top bit.
 | |
|             sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION);
 | |
|             loss = sig::add_or_sub(
 | |
|                 &mut wide_sig,
 | |
|                 &mut self.exp,
 | |
|                 &mut self.sign,
 | |
|                 &mut ext_addend_sig,
 | |
|                 addend.exp + 1,
 | |
|                 addend.sign,
 | |
|             );
 | |
| 
 | |
|             omsb = sig::omsb(&wide_sig);
 | |
|         }
 | |
| 
 | |
|         // Convert the result having "2 * S::PRECISION" significant-bits back to the one
 | |
|         // having "S::PRECISION" significant-bits. First, move the radix point from
 | |
|         // position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be
 | |
|         // adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION".
 | |
|         self.exp -= S::PRECISION as ExpInt + 1;
 | |
| 
 | |
|         // In case MSB resides at the left-hand side of radix point, shift the
 | |
|         // mantissa right by some amount to make sure the MSB reside right before
 | |
|         // the radix point (i.e., "MSB . rest-significant-bits").
 | |
|         if omsb > S::PRECISION {
 | |
|             let bits = omsb - S::PRECISION;
 | |
|             loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss);
 | |
|         }
 | |
| 
 | |
|         self.sig[0] = wide_sig[0];
 | |
| 
 | |
|         let mut status;
 | |
|         self = unpack!(status=, self.normalize(round, loss));
 | |
|         if loss != Loss::ExactlyZero {
 | |
|             status |= Status::INEXACT;
 | |
|         }
 | |
| 
 | |
|         // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|         // positive zero unless rounding to minus infinity, except that
 | |
|         // adding two like-signed zeroes gives that zero.
 | |
|         if self.category == Category::Zero
 | |
|             && !status.intersects(Status::UNDERFLOW)
 | |
|             && self.sign != addend.sign
 | |
|         {
 | |
|             self.sign = round == Round::TowardNegative;
 | |
|         }
 | |
| 
 | |
|         status.and(self)
 | |
|     }
 | |
| 
 | |
|     fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
 | |
|         self.sign ^= rhs.sign;
 | |
| 
 | |
|         match (self.category, rhs.category) {
 | |
|             (Category::NaN, _) => {
 | |
|                 self.sign = false;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (_, Category::NaN) => {
 | |
|                 self.category = Category::NaN;
 | |
|                 self.sig = rhs.sig;
 | |
|                 self.sign = false;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {
 | |
|                 Status::INVALID_OP.and(Self::NAN)
 | |
|             }
 | |
| 
 | |
|             (Category::Infinity | Category::Zero, _) => Status::OK.and(self),
 | |
| 
 | |
|             (Category::Normal, Category::Infinity) => {
 | |
|                 self.category = Category::Zero;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Normal, Category::Zero) => {
 | |
|                 self.category = Category::Infinity;
 | |
|                 Status::DIV_BY_ZERO.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Normal, Category::Normal) => {
 | |
|                 self.exp -= rhs.exp;
 | |
|                 let dividend = self.sig[0];
 | |
|                 let loss = sig::div(
 | |
|                     &mut self.sig,
 | |
|                     &mut self.exp,
 | |
|                     &mut [dividend],
 | |
|                     &mut [rhs.sig[0]],
 | |
|                     S::PRECISION,
 | |
|                 );
 | |
|                 let mut status;
 | |
|                 self = unpack!(status=, self.normalize(round, loss));
 | |
|                 if loss != Loss::ExactlyZero {
 | |
|                     status |= Status::INEXACT;
 | |
|                 }
 | |
|                 status.and(self)
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> {
 | |
|         match (self.category, rhs.category) {
 | |
|             (Category::NaN, _)
 | |
|             | (Category::Zero, Category::Infinity | Category::Normal)
 | |
|             | (Category::Normal, Category::Infinity) => Status::OK.and(self),
 | |
| 
 | |
|             (_, Category::NaN) => {
 | |
|                 self.sign = false;
 | |
|                 self.category = Category::NaN;
 | |
|                 self.sig = rhs.sig;
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
| 
 | |
|             (Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN),
 | |
| 
 | |
|             (Category::Normal, Category::Normal) => {
 | |
|                 while self.is_finite_non_zero()
 | |
|                     && rhs.is_finite_non_zero()
 | |
|                     && self.cmp_abs_normal(rhs) != Ordering::Less
 | |
|                 {
 | |
|                     let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb());
 | |
|                     if self.cmp_abs_normal(v) == Ordering::Less {
 | |
|                         v = v.scalbn(-1);
 | |
|                     }
 | |
|                     v.sign = self.sign;
 | |
| 
 | |
|                     let status;
 | |
|                     self = unpack!(status=, self - v);
 | |
|                     assert_eq!(status, Status::OK);
 | |
|                 }
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
 | |
|         // If the exponent is large enough, we know that this value is already
 | |
|         // integral, and the arithmetic below would potentially cause it to saturate
 | |
|         // to +/-Inf. Bail out early instead.
 | |
|         if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt {
 | |
|             return Status::OK.and(self);
 | |
|         }
 | |
| 
 | |
|         // The algorithm here is quite simple: we add 2^(p-1), where p is the
 | |
|         // precision of our format, and then subtract it back off again. The choice
 | |
|         // of rounding modes for the addition/subtraction determines the rounding mode
 | |
|         // for our integral rounding as well.
 | |
|         // NOTE: When the input value is negative, we do subtraction followed by
 | |
|         // addition instead.
 | |
|         assert!(S::PRECISION <= 128);
 | |
|         let mut status;
 | |
|         let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1)));
 | |
|         let magic_const = magic_const.copy_sign(self);
 | |
| 
 | |
|         if status != Status::OK {
 | |
|             return status.and(self);
 | |
|         }
 | |
| 
 | |
|         let mut r = self;
 | |
|         r = unpack!(status=, r.add_r(magic_const, round));
 | |
|         if status != Status::OK && status != Status::INEXACT {
 | |
|             return status.and(self);
 | |
|         }
 | |
| 
 | |
|         // Restore the input sign to handle 0.0/-0.0 cases correctly.
 | |
|         r.sub_r(magic_const, round).map(|r| r.copy_sign(self))
 | |
|     }
 | |
| 
 | |
|     fn next_up(mut self) -> StatusAnd<Self> {
 | |
|         // Compute nextUp(x), handling each float category separately.
 | |
|         match self.category {
 | |
|             Category::Infinity => {
 | |
|                 if self.sign {
 | |
|                     // nextUp(-inf) = -largest
 | |
|                     Status::OK.and(-Self::largest())
 | |
|                 } else {
 | |
|                     // nextUp(+inf) = +inf
 | |
|                     Status::OK.and(self)
 | |
|                 }
 | |
|             }
 | |
|             Category::NaN => {
 | |
|                 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
 | |
|                 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
 | |
|                 //                     change the payload.
 | |
|                 if self.is_signaling() {
 | |
|                     // For consistency, propagate the sign of the sNaN to the qNaN.
 | |
|                     Status::INVALID_OP.and(Self::NAN.copy_sign(self))
 | |
|                 } else {
 | |
|                     Status::OK.and(self)
 | |
|                 }
 | |
|             }
 | |
|             Category::Zero => {
 | |
|                 // nextUp(pm 0) = +smallest
 | |
|                 Status::OK.and(Self::SMALLEST)
 | |
|             }
 | |
|             Category::Normal => {
 | |
|                 // nextUp(-smallest) = -0
 | |
|                 if self.is_smallest() && self.sign {
 | |
|                     return Status::OK.and(-Self::ZERO);
 | |
|                 }
 | |
| 
 | |
|                 // nextUp(largest) == INFINITY
 | |
|                 if self.is_largest() && !self.sign {
 | |
|                     return Status::OK.and(Self::INFINITY);
 | |
|                 }
 | |
| 
 | |
|                 // Excluding the integral bit. This allows us to test for binade boundaries.
 | |
|                 let sig_mask = (1 << (S::PRECISION - 1)) - 1;
 | |
| 
 | |
|                 // nextUp(normal) == normal + inc.
 | |
|                 if self.sign {
 | |
|                     // If we are negative, we need to decrement the significand.
 | |
| 
 | |
|                     // We only cross a binade boundary that requires adjusting the exponent
 | |
|                     // if:
 | |
|                     //   1. exponent != S::MIN_EXP. This implies we are not in the
 | |
|                     //   smallest binade or are dealing with denormals.
 | |
|                     //   2. Our significand excluding the integral bit is all zeros.
 | |
|                     let crossing_binade_boundary =
 | |
|                         self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0;
 | |
| 
 | |
|                     // Decrement the significand.
 | |
|                     //
 | |
|                     // We always do this since:
 | |
|                     //   1. If we are dealing with a non-binade decrement, by definition we
 | |
|                     //   just decrement the significand.
 | |
|                     //   2. If we are dealing with a normal -> normal binade decrement, since
 | |
|                     //   we have an explicit integral bit the fact that all bits but the
 | |
|                     //   integral bit are zero implies that subtracting one will yield a
 | |
|                     //   significand with 0 integral bit and 1 in all other spots. Thus we
 | |
|                     //   must just adjust the exponent and set the integral bit to 1.
 | |
|                     //   3. If we are dealing with a normal -> denormal binade decrement,
 | |
|                     //   since we set the integral bit to 0 when we represent denormals, we
 | |
|                     //   just decrement the significand.
 | |
|                     sig::decrement(&mut self.sig);
 | |
| 
 | |
|                     if crossing_binade_boundary {
 | |
|                         // Our result is a normal number. Do the following:
 | |
|                         // 1. Set the integral bit to 1.
 | |
|                         // 2. Decrement the exponent.
 | |
|                         sig::set_bit(&mut self.sig, S::PRECISION - 1);
 | |
|                         self.exp -= 1;
 | |
|                     }
 | |
|                 } else {
 | |
|                     // If we are positive, we need to increment the significand.
 | |
| 
 | |
|                     // We only cross a binade boundary that requires adjusting the exponent if
 | |
|                     // the input is not a denormal and all of said input's significand bits
 | |
|                     // are set. If all of said conditions are true: clear the significand, set
 | |
|                     // the integral bit to 1, and increment the exponent. If we have a
 | |
|                     // denormal always increment since moving denormals and the numbers in the
 | |
|                     // smallest normal binade have the same exponent in our representation.
 | |
|                     let crossing_binade_boundary =
 | |
|                         !self.is_denormal() && self.sig[0] & sig_mask == sig_mask;
 | |
| 
 | |
|                     if crossing_binade_boundary {
 | |
|                         self.sig = [0];
 | |
|                         sig::set_bit(&mut self.sig, S::PRECISION - 1);
 | |
|                         assert_ne!(
 | |
|                             self.exp,
 | |
|                             S::MAX_EXP,
 | |
|                             "We can not increment an exponent beyond the MAX_EXP \
 | |
|                              allowed by the given floating point semantics."
 | |
|                         );
 | |
|                         self.exp += 1;
 | |
|                     } else {
 | |
|                         sig::increment(&mut self.sig);
 | |
|                     }
 | |
|                 }
 | |
|                 Status::OK.and(self)
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn from_bits(input: u128) -> Self {
 | |
|         // Dispatch to semantics.
 | |
|         S::from_bits(input)
 | |
|     }
 | |
| 
 | |
|     fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
 | |
|         IeeeFloat {
 | |
|             sig: [input],
 | |
|             exp: S::PRECISION as ExpInt - 1,
 | |
|             category: Category::Normal,
 | |
|             sign: false,
 | |
|             marker: PhantomData,
 | |
|         }
 | |
|         .normalize(round, Loss::ExactlyZero)
 | |
|     }
 | |
| 
 | |
|     fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> {
 | |
|         if s.is_empty() {
 | |
|             return Err(ParseError("Invalid string length"));
 | |
|         }
 | |
| 
 | |
|         // Handle special cases.
 | |
|         match s {
 | |
|             "inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)),
 | |
|             "-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)),
 | |
|             "nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)),
 | |
|             "-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)),
 | |
|             _ => {}
 | |
|         }
 | |
| 
 | |
|         // Handle a leading minus sign.
 | |
|         let minus = s.starts_with('-');
 | |
|         if minus || s.starts_with('+') {
 | |
|             s = &s[1..];
 | |
|             if s.is_empty() {
 | |
|                 return Err(ParseError("String has no digits"));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Adjust the rounding mode for the absolute value below.
 | |
|         if minus {
 | |
|             round = -round;
 | |
|         }
 | |
| 
 | |
|         let r = if s.starts_with("0x") || s.starts_with("0X") {
 | |
|             s = &s[2..];
 | |
|             if s.is_empty() {
 | |
|                 return Err(ParseError("Invalid string"));
 | |
|             }
 | |
|             Self::from_hexadecimal_string(s, round)?
 | |
|         } else {
 | |
|             Self::from_decimal_string(s, round)?
 | |
|         };
 | |
| 
 | |
|         Ok(r.map(|r| if minus { -r } else { r }))
 | |
|     }
 | |
| 
 | |
|     fn to_bits(self) -> u128 {
 | |
|         // Dispatch to semantics.
 | |
|         S::to_bits(self)
 | |
|     }
 | |
| 
 | |
|     fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
 | |
|         // The result of trying to convert a number too large.
 | |
|         let overflow = if self.sign {
 | |
|             // Negative numbers cannot be represented as unsigned.
 | |
|             0
 | |
|         } else {
 | |
|             // Largest unsigned integer of the given width.
 | |
|             !0 >> (128 - width)
 | |
|         };
 | |
| 
 | |
|         *is_exact = false;
 | |
| 
 | |
|         match self.category {
 | |
|             Category::NaN => Status::INVALID_OP.and(0),
 | |
| 
 | |
|             Category::Infinity => Status::INVALID_OP.and(overflow),
 | |
| 
 | |
|             Category::Zero => {
 | |
|                 // Negative zero can't be represented as an int.
 | |
|                 *is_exact = !self.sign;
 | |
|                 Status::OK.and(0)
 | |
|             }
 | |
| 
 | |
|             Category::Normal => {
 | |
|                 let mut r = 0;
 | |
| 
 | |
|                 // Step 1: place our absolute value, with any fraction truncated, in
 | |
|                 // the destination.
 | |
|                 let truncated_bits = if self.exp < 0 {
 | |
|                     // Our absolute value is less than one; truncate everything.
 | |
|                     // For exponent -1 the integer bit represents .5, look at that.
 | |
|                     // For smaller exponents leftmost truncated bit is 0.
 | |
|                     S::PRECISION - 1 + (-self.exp) as usize
 | |
|                 } else {
 | |
|                     // We want the most significant (exponent + 1) bits; the rest are
 | |
|                     // truncated.
 | |
|                     let bits = self.exp as usize + 1;
 | |
| 
 | |
|                     // Hopelessly large in magnitude?
 | |
|                     if bits > width {
 | |
|                         return Status::INVALID_OP.and(overflow);
 | |
|                     }
 | |
| 
 | |
|                     if bits < S::PRECISION {
 | |
|                         // We truncate (S::PRECISION - bits) bits.
 | |
|                         r = self.sig[0] >> (S::PRECISION - bits);
 | |
|                         S::PRECISION - bits
 | |
|                     } else {
 | |
|                         // We want at least as many bits as are available.
 | |
|                         r = self.sig[0] << (bits - S::PRECISION);
 | |
|                         0
 | |
|                     }
 | |
|                 };
 | |
| 
 | |
|                 // Step 2: work out any lost fraction, and increment the absolute
 | |
|                 // value if we would round away from zero.
 | |
|                 let mut loss = Loss::ExactlyZero;
 | |
|                 if truncated_bits > 0 {
 | |
|                     loss = Loss::through_truncation(&self.sig, truncated_bits);
 | |
|                     if loss != Loss::ExactlyZero
 | |
|                         && self.round_away_from_zero(round, loss, truncated_bits)
 | |
|                     {
 | |
|                         r = r.wrapping_add(1);
 | |
|                         if r == 0 {
 | |
|                             return Status::INVALID_OP.and(overflow); // Overflow.
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Step 3: check if we fit in the destination.
 | |
|                 if r > overflow {
 | |
|                     return Status::INVALID_OP.and(overflow);
 | |
|                 }
 | |
| 
 | |
|                 if loss == Loss::ExactlyZero {
 | |
|                     *is_exact = true;
 | |
|                     Status::OK.and(r)
 | |
|                 } else {
 | |
|                     Status::INEXACT.and(r)
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn cmp_abs_normal(self, rhs: Self) -> Ordering {
 | |
|         assert!(self.is_finite_non_zero());
 | |
|         assert!(rhs.is_finite_non_zero());
 | |
| 
 | |
|         // If exponents are equal, do an unsigned comparison of the significands.
 | |
|         self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig))
 | |
|     }
 | |
| 
 | |
|     fn bitwise_eq(self, rhs: Self) -> bool {
 | |
|         if self.category != rhs.category || self.sign != rhs.sign {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if self.category == Category::Zero || self.category == Category::Infinity {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         if self.is_finite_non_zero() && self.exp != rhs.exp {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         self.sig == rhs.sig
 | |
|     }
 | |
| 
 | |
|     fn is_negative(self) -> bool {
 | |
|         self.sign
 | |
|     }
 | |
| 
 | |
|     fn is_denormal(self) -> bool {
 | |
|         self.is_finite_non_zero()
 | |
|             && self.exp == S::MIN_EXP
 | |
|             && !sig::get_bit(&self.sig, S::PRECISION - 1)
 | |
|     }
 | |
| 
 | |
|     fn is_signaling(self) -> bool {
 | |
|         // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
 | |
|         // first bit of the trailing significand being 0.
 | |
|         self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT)
 | |
|     }
 | |
| 
 | |
|     fn category(self) -> Category {
 | |
|         self.category
 | |
|     }
 | |
| 
 | |
|     fn get_exact_inverse(self) -> Option<Self> {
 | |
|         // Special floats and denormals have no exact inverse.
 | |
|         if !self.is_finite_non_zero() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // Check that the number is a power of two by making sure that only the
 | |
|         // integer bit is set in the significand.
 | |
|         if self.sig != [1 << (S::PRECISION - 1)] {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // Get the inverse.
 | |
|         let mut reciprocal = Self::from_u128(1).value;
 | |
|         let status;
 | |
|         reciprocal = unpack!(status=, reciprocal / self);
 | |
|         if status != Status::OK {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         // Avoid multiplication with a denormal, it is not safe on all platforms and
 | |
|         // may be slower than a normal division.
 | |
|         if reciprocal.is_denormal() {
 | |
|             return None;
 | |
|         }
 | |
| 
 | |
|         assert!(reciprocal.is_finite_non_zero());
 | |
|         assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]);
 | |
| 
 | |
|         Some(reciprocal)
 | |
|     }
 | |
| 
 | |
|     fn ilogb(mut self) -> ExpInt {
 | |
|         if self.is_nan() {
 | |
|             return IEK_NAN;
 | |
|         }
 | |
|         if self.is_zero() {
 | |
|             return IEK_ZERO;
 | |
|         }
 | |
|         if self.is_infinite() {
 | |
|             return IEK_INF;
 | |
|         }
 | |
|         if !self.is_denormal() {
 | |
|             return self.exp;
 | |
|         }
 | |
| 
 | |
|         let sig_bits = (S::PRECISION - 1) as ExpInt;
 | |
|         self.exp += sig_bits;
 | |
|         self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value;
 | |
|         self.exp - sig_bits
 | |
|     }
 | |
| 
 | |
|     fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self {
 | |
|         // If exp is wildly out-of-scale, simply adding it to self.exp will
 | |
|         // overflow; clamp it to a safe range before adding, but ensure that the range
 | |
|         // is large enough that the clamp does not change the result. The range we
 | |
|         // need to support is the difference between the largest possible exponent and
 | |
|         // the normalized exponent of half the smallest denormal.
 | |
| 
 | |
|         let sig_bits = (S::PRECISION - 1) as i32;
 | |
|         let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1;
 | |
| 
 | |
|         // Clamp to one past the range ends to let normalize handle overflow.
 | |
|         let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change);
 | |
|         self.exp = self.exp.saturating_add(exp_change as ExpInt);
 | |
|         self = self.normalize(round, Loss::ExactlyZero).value;
 | |
|         if self.is_nan() {
 | |
|             sig::set_bit(&mut self.sig, S::QNAN_BIT);
 | |
|         }
 | |
|         self
 | |
|     }
 | |
| 
 | |
|     fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self {
 | |
|         *exp = self.ilogb();
 | |
| 
 | |
|         // Quiet signalling nans.
 | |
|         if *exp == IEK_NAN {
 | |
|             sig::set_bit(&mut self.sig, S::QNAN_BIT);
 | |
|             return self;
 | |
|         }
 | |
| 
 | |
|         if *exp == IEK_INF {
 | |
|             return self;
 | |
|         }
 | |
| 
 | |
|         // 1 is added because frexp is defined to return a normalized fraction in
 | |
|         // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
 | |
|         if *exp == IEK_ZERO {
 | |
|             *exp = 0;
 | |
|         } else {
 | |
|             *exp += 1;
 | |
|         }
 | |
|         self.scalbn_r(-*exp, round)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> {
 | |
|     fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> {
 | |
|         let mut r = IeeeFloat {
 | |
|             sig: self.sig,
 | |
|             exp: self.exp,
 | |
|             category: self.category,
 | |
|             sign: self.sign,
 | |
|             marker: PhantomData,
 | |
|         };
 | |
| 
 | |
|         // x86 has some unusual NaNs which cannot be represented in any other
 | |
|         // format; note them here.
 | |
|         fn is_x87_double_extended<S: Semantics>() -> bool {
 | |
|             S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND
 | |
|         }
 | |
|         let x87_special_nan = is_x87_double_extended::<S>()
 | |
|             && !is_x87_double_extended::<T>()
 | |
|             && r.category == Category::NaN
 | |
|             && (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND;
 | |
| 
 | |
|         // If this is a truncation of a denormal number, and the target semantics
 | |
|         // has larger exponent range than the source semantics (this can happen
 | |
|         // when truncating from PowerPC double-double to double format), the
 | |
|         // right shift could lose result mantissa bits. Adjust exponent instead
 | |
|         // of performing excessive shift.
 | |
|         let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt;
 | |
|         if shift < 0 && r.is_finite_non_zero() {
 | |
|             let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt;
 | |
|             if r.exp + exp_change < T::MIN_EXP {
 | |
|                 exp_change = T::MIN_EXP - r.exp;
 | |
|             }
 | |
|             if exp_change < shift {
 | |
|                 exp_change = shift;
 | |
|             }
 | |
|             if exp_change < 0 {
 | |
|                 shift -= exp_change;
 | |
|                 r.exp += exp_change;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // If this is a truncation, perform the shift.
 | |
|         let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
 | |
|             sig::shift_right(&mut r.sig, &mut 0, -shift as usize)
 | |
|         } else {
 | |
|             Loss::ExactlyZero
 | |
|         };
 | |
| 
 | |
|         // If this is an extension, perform the shift.
 | |
|         if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
 | |
|             sig::shift_left(&mut r.sig, &mut 0, shift as usize);
 | |
|         }
 | |
| 
 | |
|         let status;
 | |
|         if r.is_finite_non_zero() {
 | |
|             r = unpack!(status=, r.normalize(round, loss));
 | |
|             *loses_info = status != Status::OK;
 | |
|         } else if r.category == Category::NaN {
 | |
|             *loses_info = loss != Loss::ExactlyZero || x87_special_nan;
 | |
| 
 | |
|             // For x87 extended precision, we want to make a NaN, not a special NaN if
 | |
|             // the input wasn't special either.
 | |
|             if !x87_special_nan && is_x87_double_extended::<T>() {
 | |
|                 sig::set_bit(&mut r.sig, T::PRECISION - 1);
 | |
|             }
 | |
| 
 | |
|             // Convert of sNaN creates qNaN and raises an exception (invalid op).
 | |
|             // This also guarantees that a sNaN does not become Inf on a truncation
 | |
|             // that loses all payload bits.
 | |
|             if self.is_signaling() {
 | |
|                 // Quiet signaling NaN.
 | |
|                 sig::set_bit(&mut r.sig, T::QNAN_BIT);
 | |
|                 status = Status::INVALID_OP;
 | |
|             } else {
 | |
|                 status = Status::OK;
 | |
|             }
 | |
|         } else {
 | |
|             *loses_info = false;
 | |
|             status = Status::OK;
 | |
|         }
 | |
| 
 | |
|         status.and(r)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<S: Semantics> IeeeFloat<S> {
 | |
|     /// Handle positive overflow. We either return infinity or
 | |
|     /// the largest finite number. For negative overflow,
 | |
|     /// negate the `round` argument before calling.
 | |
|     fn overflow_result(round: Round) -> StatusAnd<Self> {
 | |
|         match round {
 | |
|             // Infinity?
 | |
|             Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => {
 | |
|                 (Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY)
 | |
|             }
 | |
|             // Otherwise we become the largest finite number.
 | |
|             Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Returns `true` if, when truncating the current number, with `bit` the
 | |
|     /// new LSB, with the given lost fraction and rounding mode, the result
 | |
|     /// would need to be rounded away from zero (i.e., by increasing the
 | |
|     /// signficand). This routine must work for `Category::Zero` of both signs, and
 | |
|     /// `Category::Normal` numbers.
 | |
|     fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool {
 | |
|         // NaNs and infinities should not have lost fractions.
 | |
|         assert!(self.is_finite_non_zero() || self.is_zero());
 | |
| 
 | |
|         // Current callers never pass this so we don't handle it.
 | |
|         assert_ne!(loss, Loss::ExactlyZero);
 | |
| 
 | |
|         match round {
 | |
|             Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf,
 | |
|             Round::NearestTiesToEven => {
 | |
|                 if loss == Loss::MoreThanHalf {
 | |
|                     return true;
 | |
|                 }
 | |
| 
 | |
|                 // Our zeros don't have a significand to test.
 | |
|                 if loss == Loss::ExactlyHalf && self.category != Category::Zero {
 | |
|                     return sig::get_bit(&self.sig, bit);
 | |
|                 }
 | |
| 
 | |
|                 false
 | |
|             }
 | |
|             Round::TowardZero => false,
 | |
|             Round::TowardPositive => !self.sign,
 | |
|             Round::TowardNegative => self.sign,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> {
 | |
|         if !self.is_finite_non_zero() {
 | |
|             return Status::OK.and(self);
 | |
|         }
 | |
| 
 | |
|         // Before rounding normalize the exponent of Category::Normal numbers.
 | |
|         let mut omsb = sig::omsb(&self.sig);
 | |
| 
 | |
|         if omsb > 0 {
 | |
|             // OMSB is numbered from 1. We want to place it in the integer
 | |
|             // bit numbered PRECISION if possible, with a compensating change in
 | |
|             // the exponent.
 | |
|             let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt);
 | |
| 
 | |
|             // If the resulting exponent is too high, overflow according to
 | |
|             // the rounding mode.
 | |
|             if final_exp > S::MAX_EXP {
 | |
|                 let round = if self.sign { -round } else { round };
 | |
|                 return Self::overflow_result(round).map(|r| r.copy_sign(self));
 | |
|             }
 | |
| 
 | |
|             // Subnormal numbers have exponent MIN_EXP, and their MSB
 | |
|             // is forced based on that.
 | |
|             if final_exp < S::MIN_EXP {
 | |
|                 final_exp = S::MIN_EXP;
 | |
|             }
 | |
| 
 | |
|             // Shifting left is easy as we don't lose precision.
 | |
|             if final_exp < self.exp {
 | |
|                 assert_eq!(loss, Loss::ExactlyZero);
 | |
| 
 | |
|                 let exp_change = (self.exp - final_exp) as usize;
 | |
|                 sig::shift_left(&mut self.sig, &mut self.exp, exp_change);
 | |
| 
 | |
|                 return Status::OK.and(self);
 | |
|             }
 | |
| 
 | |
|             // Shift right and capture any new lost fraction.
 | |
|             if final_exp > self.exp {
 | |
|                 let exp_change = (final_exp - self.exp) as usize;
 | |
|                 loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss);
 | |
| 
 | |
|                 // Keep OMSB up-to-date.
 | |
|                 omsb = omsb.saturating_sub(exp_change);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Now round the number according to round given the lost
 | |
|         // fraction.
 | |
| 
 | |
|         // As specified in IEEE 754, since we do not trap we do not report
 | |
|         // underflow for exact results.
 | |
|         if loss == Loss::ExactlyZero {
 | |
|             // Canonicalize zeros.
 | |
|             if omsb == 0 {
 | |
|                 self.category = Category::Zero;
 | |
|             }
 | |
| 
 | |
|             return Status::OK.and(self);
 | |
|         }
 | |
| 
 | |
|         // Increment the significand if we're rounding away from zero.
 | |
|         if self.round_away_from_zero(round, loss, 0) {
 | |
|             if omsb == 0 {
 | |
|                 self.exp = S::MIN_EXP;
 | |
|             }
 | |
| 
 | |
|             // We should never overflow.
 | |
|             assert_eq!(sig::increment(&mut self.sig), 0);
 | |
|             omsb = sig::omsb(&self.sig);
 | |
| 
 | |
|             // Did the significand increment overflow?
 | |
|             if omsb == S::PRECISION + 1 {
 | |
|                 // Renormalize by incrementing the exponent and shifting our
 | |
|                 // significand right one. However if we already have the
 | |
|                 // maximum exponent we overflow to infinity.
 | |
|                 if self.exp == S::MAX_EXP {
 | |
|                     self.category = Category::Infinity;
 | |
| 
 | |
|                     return (Status::OVERFLOW | Status::INEXACT).and(self);
 | |
|                 }
 | |
| 
 | |
|                 let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1);
 | |
| 
 | |
|                 return Status::INEXACT.and(self);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // The normal case - we were and are not denormal, and any
 | |
|         // significand increment above didn't overflow.
 | |
|         if omsb == S::PRECISION {
 | |
|             return Status::INEXACT.and(self);
 | |
|         }
 | |
| 
 | |
|         // We have a non-zero denormal.
 | |
|         assert!(omsb < S::PRECISION);
 | |
| 
 | |
|         // Canonicalize zeros.
 | |
|         if omsb == 0 {
 | |
|             self.category = Category::Zero;
 | |
|         }
 | |
| 
 | |
|         // The Category::Zero case is a denormal that underflowed to zero.
 | |
|         (Status::UNDERFLOW | Status::INEXACT).and(self)
 | |
|     }
 | |
| 
 | |
|     fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
 | |
|         let mut r = IeeeFloat {
 | |
|             sig: [0],
 | |
|             exp: 0,
 | |
|             category: Category::Normal,
 | |
|             sign: false,
 | |
|             marker: PhantomData,
 | |
|         };
 | |
| 
 | |
|         let mut any_digits = false;
 | |
|         let mut has_exp = false;
 | |
|         let mut bit_pos = LIMB_BITS as isize;
 | |
|         let mut loss = None;
 | |
| 
 | |
|         // Without leading or trailing zeros, irrespective of the dot.
 | |
|         let mut first_sig_digit = None;
 | |
|         let mut dot = s.len();
 | |
| 
 | |
|         for (p, c) in s.char_indices() {
 | |
|             // Skip leading zeros and any (hexa)decimal point.
 | |
|             if c == '.' {
 | |
|                 if dot != s.len() {
 | |
|                     return Err(ParseError("String contains multiple dots"));
 | |
|                 }
 | |
|                 dot = p;
 | |
|             } else if let Some(hex_value) = c.to_digit(16) {
 | |
|                 any_digits = true;
 | |
| 
 | |
|                 if first_sig_digit.is_none() {
 | |
|                     if hex_value == 0 {
 | |
|                         continue;
 | |
|                     }
 | |
|                     first_sig_digit = Some(p);
 | |
|                 }
 | |
| 
 | |
|                 // Store the number while we have space.
 | |
|                 bit_pos -= 4;
 | |
|                 if bit_pos >= 0 {
 | |
|                     r.sig[0] |= (hex_value as Limb) << bit_pos;
 | |
|                 // If zero or one-half (the hexadecimal digit 8) are followed
 | |
|                 // by non-zero, they're a little more than zero or one-half.
 | |
|                 } else if let Some(ref mut loss) = loss {
 | |
|                     if hex_value != 0 {
 | |
|                         if *loss == Loss::ExactlyZero {
 | |
|                             *loss = Loss::LessThanHalf;
 | |
|                         }
 | |
|                         if *loss == Loss::ExactlyHalf {
 | |
|                             *loss = Loss::MoreThanHalf;
 | |
|                         }
 | |
|                     }
 | |
|                 } else {
 | |
|                     loss = Some(match hex_value {
 | |
|                         0 => Loss::ExactlyZero,
 | |
|                         1..=7 => Loss::LessThanHalf,
 | |
|                         8 => Loss::ExactlyHalf,
 | |
|                         9..=15 => Loss::MoreThanHalf,
 | |
|                         _ => unreachable!(),
 | |
|                     });
 | |
|                 }
 | |
|             } else if c == 'p' || c == 'P' {
 | |
|                 if !any_digits {
 | |
|                     return Err(ParseError("Significand has no digits"));
 | |
|                 }
 | |
| 
 | |
|                 if dot == s.len() {
 | |
|                     dot = p;
 | |
|                 }
 | |
| 
 | |
|                 let mut chars = s[p + 1..].chars().peekable();
 | |
| 
 | |
|                 // Adjust for the given exponent.
 | |
|                 let exp_minus = chars.peek() == Some(&'-');
 | |
|                 if exp_minus || chars.peek() == Some(&'+') {
 | |
|                     chars.next();
 | |
|                 }
 | |
| 
 | |
|                 for c in chars {
 | |
|                     if let Some(value) = c.to_digit(10) {
 | |
|                         has_exp = true;
 | |
|                         r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt);
 | |
|                     } else {
 | |
|                         return Err(ParseError("Invalid character in exponent"));
 | |
|                     }
 | |
|                 }
 | |
|                 if !has_exp {
 | |
|                     return Err(ParseError("Exponent has no digits"));
 | |
|                 }
 | |
| 
 | |
|                 if exp_minus {
 | |
|                     r.exp = -r.exp;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             } else {
 | |
|                 return Err(ParseError("Invalid character in significand"));
 | |
|             }
 | |
|         }
 | |
|         if !any_digits {
 | |
|             return Err(ParseError("Significand has no digits"));
 | |
|         }
 | |
| 
 | |
|         // Hex floats require an exponent but not a hexadecimal point.
 | |
|         if !has_exp {
 | |
|             return Err(ParseError("Hex strings require an exponent"));
 | |
|         }
 | |
| 
 | |
|         // Ignore the exponent if we are zero.
 | |
|         let first_sig_digit = match first_sig_digit {
 | |
|             Some(p) => p,
 | |
|             None => return Ok(Status::OK.and(Self::ZERO)),
 | |
|         };
 | |
| 
 | |
|         // Calculate the exponent adjustment implicit in the number of
 | |
|         // significant digits and adjust for writing the significand starting
 | |
|         // at the most significant nibble.
 | |
|         let exp_adjustment = if dot > first_sig_digit {
 | |
|             ExpInt::try_from(dot - first_sig_digit).unwrap()
 | |
|         } else {
 | |
|             -ExpInt::try_from(first_sig_digit - dot - 1).unwrap()
 | |
|         };
 | |
|         let exp_adjustment = exp_adjustment
 | |
|             .saturating_mul(4)
 | |
|             .saturating_sub(1)
 | |
|             .saturating_add(S::PRECISION as ExpInt)
 | |
|             .saturating_sub(LIMB_BITS as ExpInt);
 | |
|         r.exp = r.exp.saturating_add(exp_adjustment);
 | |
| 
 | |
|         Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero)))
 | |
|     }
 | |
| 
 | |
|     fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
 | |
|         // Given a normal decimal floating point number of the form
 | |
|         //
 | |
|         //   dddd.dddd[eE][+-]ddd
 | |
|         //
 | |
|         // where the decimal point and exponent are optional, fill out the
 | |
|         // variables below. Exponent is appropriate if the significand is
 | |
|         // treated as an integer, and normalized_exp if the significand
 | |
|         // is taken to have the decimal point after a single leading
 | |
|         // non-zero digit.
 | |
|         //
 | |
|         // If the value is zero, first_sig_digit is None.
 | |
| 
 | |
|         let mut any_digits = false;
 | |
|         let mut dec_exp = 0i32;
 | |
| 
 | |
|         // Without leading or trailing zeros, irrespective of the dot.
 | |
|         let mut first_sig_digit = None;
 | |
|         let mut last_sig_digit = 0;
 | |
|         let mut dot = s.len();
 | |
| 
 | |
|         for (p, c) in s.char_indices() {
 | |
|             if c == '.' {
 | |
|                 if dot != s.len() {
 | |
|                     return Err(ParseError("String contains multiple dots"));
 | |
|                 }
 | |
|                 dot = p;
 | |
|             } else if let Some(dec_value) = c.to_digit(10) {
 | |
|                 any_digits = true;
 | |
| 
 | |
|                 if dec_value != 0 {
 | |
|                     if first_sig_digit.is_none() {
 | |
|                         first_sig_digit = Some(p);
 | |
|                     }
 | |
|                     last_sig_digit = p;
 | |
|                 }
 | |
|             } else if c == 'e' || c == 'E' {
 | |
|                 if !any_digits {
 | |
|                     return Err(ParseError("Significand has no digits"));
 | |
|                 }
 | |
| 
 | |
|                 if dot == s.len() {
 | |
|                     dot = p;
 | |
|                 }
 | |
| 
 | |
|                 let mut chars = s[p + 1..].chars().peekable();
 | |
| 
 | |
|                 // Adjust for the given exponent.
 | |
|                 let exp_minus = chars.peek() == Some(&'-');
 | |
|                 if exp_minus || chars.peek() == Some(&'+') {
 | |
|                     chars.next();
 | |
|                 }
 | |
| 
 | |
|                 any_digits = false;
 | |
|                 for c in chars {
 | |
|                     if let Some(value) = c.to_digit(10) {
 | |
|                         any_digits = true;
 | |
|                         dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32);
 | |
|                     } else {
 | |
|                         return Err(ParseError("Invalid character in exponent"));
 | |
|                     }
 | |
|                 }
 | |
|                 if !any_digits {
 | |
|                     return Err(ParseError("Exponent has no digits"));
 | |
|                 }
 | |
| 
 | |
|                 if exp_minus {
 | |
|                     dec_exp = -dec_exp;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             } else {
 | |
|                 return Err(ParseError("Invalid character in significand"));
 | |
|             }
 | |
|         }
 | |
|         if !any_digits {
 | |
|             return Err(ParseError("Significand has no digits"));
 | |
|         }
 | |
| 
 | |
|         // Test if we have a zero number allowing for non-zero exponents.
 | |
|         let first_sig_digit = match first_sig_digit {
 | |
|             Some(p) => p,
 | |
|             None => return Ok(Status::OK.and(Self::ZERO)),
 | |
|         };
 | |
| 
 | |
|         // Adjust the exponents for any decimal point.
 | |
|         if dot > last_sig_digit {
 | |
|             dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32);
 | |
|         } else {
 | |
|             dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32);
 | |
|         }
 | |
|         let significand_digits = last_sig_digit - first_sig_digit + 1
 | |
|             - (dot > first_sig_digit && dot < last_sig_digit) as usize;
 | |
|         let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1);
 | |
| 
 | |
|         // Handle the cases where exponents are obviously too large or too
 | |
|         // small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp
 | |
|         // definitely overflows if
 | |
|         //
 | |
|         //       (dec_exp - 1) * L >= MAX_EXP
 | |
|         //
 | |
|         // and definitely underflows to zero where
 | |
|         //
 | |
|         //       (dec_exp + 1) * L <= MIN_EXP - PRECISION
 | |
|         //
 | |
|         // With integer arithmetic the tightest bounds for L are
 | |
|         //
 | |
|         //       93/28 < L < 196/59            [ numerator <= 256 ]
 | |
|         //       42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
 | |
| 
 | |
|         // Check for MAX_EXP.
 | |
|         if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 {
 | |
|             // Overflow and round.
 | |
|             return Ok(Self::overflow_result(round));
 | |
|         }
 | |
| 
 | |
|         // Check for MIN_EXP.
 | |
|         if normalized_exp.saturating_add(1).saturating_mul(28738)
 | |
|             <= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32)
 | |
|         {
 | |
|             // Underflow to zero and round.
 | |
|             let r =
 | |
|                 if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO };
 | |
|             return Ok((Status::UNDERFLOW | Status::INEXACT).and(r));
 | |
|         }
 | |
| 
 | |
|         // A tight upper bound on number of bits required to hold an
 | |
|         // N-digit decimal integer is N * 196 / 59. Allocate enough space
 | |
|         // to hold the full significand, and an extra limb required by
 | |
|         // tcMultiplyPart.
 | |
|         let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59);
 | |
|         let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs);
 | |
| 
 | |
|         // Convert to binary efficiently - we do almost all multiplication
 | |
|         // in a Limb. When this would overflow do we do a single
 | |
|         // bignum multiplication, and then revert again to multiplication
 | |
|         // in a Limb.
 | |
|         let mut chars = s[first_sig_digit..=last_sig_digit].chars();
 | |
|         loop {
 | |
|             let mut val = 0;
 | |
|             let mut multiplier = 1;
 | |
| 
 | |
|             loop {
 | |
|                 let dec_value = match chars.next() {
 | |
|                     Some('.') => continue,
 | |
|                     Some(c) => c.to_digit(10).unwrap(),
 | |
|                     None => break,
 | |
|                 };
 | |
| 
 | |
|                 multiplier *= 10;
 | |
|                 val = val * 10 + dec_value as Limb;
 | |
| 
 | |
|                 // The maximum number that can be multiplied by ten with any
 | |
|                 // digit added without overflowing a Limb.
 | |
|                 if multiplier > (!0 - 9) / 10 {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // If we've consumed no digits, we're done.
 | |
|             if multiplier == 1 {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // Multiply out the current limb.
 | |
|             let mut carry = val;
 | |
|             for x in &mut dec_sig {
 | |
|                 let [low, mut high] = sig::widening_mul(*x, multiplier);
 | |
| 
 | |
|                 // Now add carry.
 | |
|                 let (low, overflow) = low.overflowing_add(carry);
 | |
|                 high += overflow as Limb;
 | |
| 
 | |
|                 *x = low;
 | |
|                 carry = high;
 | |
|             }
 | |
| 
 | |
|             // If we had carry, we need another limb (likely but not guaranteed).
 | |
|             if carry > 0 {
 | |
|                 dec_sig.push(carry);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Calculate pow(5, abs(dec_exp)) into `pow5_full`.
 | |
|         // The *_calc Vec's are reused scratch space, as an optimization.
 | |
|         let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = {
 | |
|             let mut power = dec_exp.abs() as usize;
 | |
| 
 | |
|             const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125];
 | |
| 
 | |
|             let mut p5_scratch = smallvec![];
 | |
|             let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]];
 | |
| 
 | |
|             let mut r_scratch = smallvec![];
 | |
|             let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]];
 | |
|             power >>= 3;
 | |
| 
 | |
|             while power > 0 {
 | |
|                 // Calculate pow(5,pow(2,n+3)).
 | |
|                 p5_scratch.resize(p5.len() * 2, 0);
 | |
|                 let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
 | |
|                 while p5_scratch.last() == Some(&0) {
 | |
|                     p5_scratch.pop();
 | |
|                 }
 | |
|                 mem::swap(&mut p5, &mut p5_scratch);
 | |
| 
 | |
|                 if power & 1 != 0 {
 | |
|                     r_scratch.resize(r.len() + p5.len(), 0);
 | |
|                     let _: Loss =
 | |
|                         sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS);
 | |
|                     while r_scratch.last() == Some(&0) {
 | |
|                         r_scratch.pop();
 | |
|                     }
 | |
|                     mem::swap(&mut r, &mut r_scratch);
 | |
|                 }
 | |
| 
 | |
|                 power >>= 1;
 | |
|             }
 | |
| 
 | |
|             (r, r_scratch, p5, p5_scratch)
 | |
|         };
 | |
| 
 | |
|         // Attempt dec_sig * 10^dec_exp with increasing precision.
 | |
|         let mut attempt = 0;
 | |
|         loop {
 | |
|             let calc_precision = (LIMB_BITS << attempt) - 1;
 | |
|             attempt += 1;
 | |
| 
 | |
|             let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>,
 | |
|                                           limbs: &[Limb]|
 | |
|              -> StatusAnd<ExpInt> {
 | |
|                 sig.resize(limbs_for_bits(calc_precision), 0);
 | |
|                 let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision);
 | |
| 
 | |
|                 // Before rounding normalize the exponent of Category::Normal numbers.
 | |
|                 let mut omsb = sig::omsb(sig);
 | |
| 
 | |
|                 assert_ne!(omsb, 0);
 | |
| 
 | |
|                 // OMSB is numbered from 1. We want to place it in the integer
 | |
|                 // bit numbered PRECISION if possible, with a compensating change in
 | |
|                 // the exponent.
 | |
|                 let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt);
 | |
| 
 | |
|                 // Shifting left is easy as we don't lose precision.
 | |
|                 if final_exp < exp {
 | |
|                     assert_eq!(loss, Loss::ExactlyZero);
 | |
| 
 | |
|                     let exp_change = (exp - final_exp) as usize;
 | |
|                     sig::shift_left(sig, &mut exp, exp_change);
 | |
| 
 | |
|                     return Status::OK.and(exp);
 | |
|                 }
 | |
| 
 | |
|                 // Shift right and capture any new lost fraction.
 | |
|                 if final_exp > exp {
 | |
|                     let exp_change = (final_exp - exp) as usize;
 | |
|                     loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss);
 | |
| 
 | |
|                     // Keep OMSB up-to-date.
 | |
|                     omsb = omsb.saturating_sub(exp_change);
 | |
|                 }
 | |
| 
 | |
|                 assert_eq!(omsb, calc_precision);
 | |
| 
 | |
|                 // Now round the number according to round given the lost
 | |
|                 // fraction.
 | |
| 
 | |
|                 // As specified in IEEE 754, since we do not trap we do not report
 | |
|                 // underflow for exact results.
 | |
|                 if loss == Loss::ExactlyZero {
 | |
|                     return Status::OK.and(exp);
 | |
|                 }
 | |
| 
 | |
|                 // Increment the significand if we're rounding away from zero.
 | |
|                 if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) {
 | |
|                     // We should never overflow.
 | |
|                     assert_eq!(sig::increment(sig), 0);
 | |
|                     omsb = sig::omsb(sig);
 | |
| 
 | |
|                     // Did the significand increment overflow?
 | |
|                     if omsb == calc_precision + 1 {
 | |
|                         let _: Loss = sig::shift_right(sig, &mut exp, 1);
 | |
| 
 | |
|                         return Status::INEXACT.and(exp);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // The normal case - we were and are not denormal, and any
 | |
|                 // significand increment above didn't overflow.
 | |
|                 Status::INEXACT.and(exp)
 | |
|             };
 | |
| 
 | |
|             let status;
 | |
|             let mut exp = unpack!(status=,
 | |
|                 calc_normal_from_limbs(&mut sig_calc, &dec_sig));
 | |
|             let pow5_status;
 | |
|             let pow5_exp = unpack!(pow5_status=,
 | |
|                 calc_normal_from_limbs(&mut pow5_calc, &pow5_full));
 | |
| 
 | |
|             // Add dec_exp, as 10^n = 5^n * 2^n.
 | |
|             exp += dec_exp as ExpInt;
 | |
| 
 | |
|             let mut used_bits = S::PRECISION;
 | |
|             let mut truncated_bits = calc_precision - used_bits;
 | |
| 
 | |
|             let half_ulp_err1 = (status != Status::OK) as Limb;
 | |
|             let (calc_loss, half_ulp_err2);
 | |
|             if dec_exp >= 0 {
 | |
|                 exp += pow5_exp;
 | |
| 
 | |
|                 sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0);
 | |
|                 calc_loss = sig::mul(
 | |
|                     &mut sig_scratch_calc,
 | |
|                     &mut exp,
 | |
|                     &sig_calc,
 | |
|                     &pow5_calc,
 | |
|                     calc_precision,
 | |
|                 );
 | |
|                 mem::swap(&mut sig_calc, &mut sig_scratch_calc);
 | |
| 
 | |
|                 half_ulp_err2 = (pow5_status != Status::OK) as Limb;
 | |
|             } else {
 | |
|                 exp -= pow5_exp;
 | |
| 
 | |
|                 sig_scratch_calc.resize(sig_calc.len(), 0);
 | |
|                 calc_loss = sig::div(
 | |
|                     &mut sig_scratch_calc,
 | |
|                     &mut exp,
 | |
|                     &mut sig_calc,
 | |
|                     &mut pow5_calc,
 | |
|                     calc_precision,
 | |
|                 );
 | |
|                 mem::swap(&mut sig_calc, &mut sig_scratch_calc);
 | |
| 
 | |
|                 // Denormal numbers have less precision.
 | |
|                 if exp < S::MIN_EXP {
 | |
|                     truncated_bits += (S::MIN_EXP - exp) as usize;
 | |
|                     used_bits = calc_precision.saturating_sub(truncated_bits);
 | |
|                 }
 | |
|                 // Extra half-ulp lost in reciprocal of exponent.
 | |
|                 half_ulp_err2 =
 | |
|                     2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb;
 | |
|             }
 | |
| 
 | |
|             // Both sig::mul and sig::div return the
 | |
|             // result with the integer bit set.
 | |
|             assert!(sig::get_bit(&sig_calc, calc_precision - 1));
 | |
| 
 | |
|             // The error from the true value, in half-ulps, on multiplying two
 | |
|             // floating point numbers, which differ from the value they
 | |
|             // approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less
 | |
|             // than the returned value.
 | |
|             //
 | |
|             // See "How to Read Floating Point Numbers Accurately" by William D Clinger.
 | |
|             assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8));
 | |
| 
 | |
|             let inexact = (calc_loss != Loss::ExactlyZero) as Limb;
 | |
|             let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 {
 | |
|                 inexact * 2 // <= inexact half-ulps.
 | |
|             } else {
 | |
|                 inexact + 2 * (half_ulp_err1 + half_ulp_err2)
 | |
|             };
 | |
| 
 | |
|             let ulps_from_boundary = {
 | |
|                 let bits = calc_precision - used_bits - 1;
 | |
| 
 | |
|                 let i = bits / LIMB_BITS;
 | |
|                 let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS));
 | |
|                 let boundary = match round {
 | |
|                     Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS),
 | |
|                     _ => 0,
 | |
|                 };
 | |
|                 if i == 0 {
 | |
|                     let delta = limb.wrapping_sub(boundary);
 | |
|                     cmp::min(delta, delta.wrapping_neg())
 | |
|                 } else if limb == boundary {
 | |
|                     if !sig::is_all_zeros(&sig_calc[1..i]) {
 | |
|                         !0 // A lot.
 | |
|                     } else {
 | |
|                         sig_calc[0]
 | |
|                     }
 | |
|                 } else if limb == boundary.wrapping_sub(1) {
 | |
|                     if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) {
 | |
|                         !0 // A lot.
 | |
|                     } else {
 | |
|                         sig_calc[0].wrapping_neg()
 | |
|                     }
 | |
|                 } else {
 | |
|                     !0 // A lot.
 | |
|                 }
 | |
|             };
 | |
| 
 | |
|             // Are we guaranteed to round correctly if we truncate?
 | |
|             if ulps_from_boundary.saturating_mul(2) >= half_ulp_err {
 | |
|                 let mut r = IeeeFloat {
 | |
|                     sig: [0],
 | |
|                     exp,
 | |
|                     category: Category::Normal,
 | |
|                     sign: false,
 | |
|                     marker: PhantomData,
 | |
|                 };
 | |
|                 sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits);
 | |
|                 // If we extracted less bits above we must adjust our exponent
 | |
|                 // to compensate for the implicit right shift.
 | |
|                 r.exp += (S::PRECISION - used_bits) as ExpInt;
 | |
|                 let loss = Loss::through_truncation(&sig_calc, truncated_bits);
 | |
|                 return Ok(r.normalize(round, loss));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Loss {
 | |
|     /// Combine the effect of two lost fractions.
 | |
|     fn combine(self, less_significant: Loss) -> Loss {
 | |
|         let mut more_significant = self;
 | |
|         if less_significant != Loss::ExactlyZero {
 | |
|             if more_significant == Loss::ExactlyZero {
 | |
|                 more_significant = Loss::LessThanHalf;
 | |
|             } else if more_significant == Loss::ExactlyHalf {
 | |
|                 more_significant = Loss::MoreThanHalf;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         more_significant
 | |
|     }
 | |
| 
 | |
|     /// Returns the fraction lost were a bignum truncated losing the least
 | |
|     /// significant `bits` bits.
 | |
|     fn through_truncation(limbs: &[Limb], bits: usize) -> Loss {
 | |
|         if bits == 0 {
 | |
|             return Loss::ExactlyZero;
 | |
|         }
 | |
| 
 | |
|         let half_bit = bits - 1;
 | |
|         let half_limb = half_bit / LIMB_BITS;
 | |
|         let (half_limb, rest) = if half_limb < limbs.len() {
 | |
|             (limbs[half_limb], &limbs[..half_limb])
 | |
|         } else {
 | |
|             (0, limbs)
 | |
|         };
 | |
|         let half = 1 << (half_bit % LIMB_BITS);
 | |
|         let has_half = half_limb & half != 0;
 | |
|         let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest);
 | |
| 
 | |
|         match (has_half, has_rest) {
 | |
|             (false, false) => Loss::ExactlyZero,
 | |
|             (false, true) => Loss::LessThanHalf,
 | |
|             (true, false) => Loss::ExactlyHalf,
 | |
|             (true, true) => Loss::MoreThanHalf,
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Implementation details of IeeeFloat significands, such as big integer arithmetic.
 | |
| /// As a rule of thumb, no functions in this module should dynamically allocate.
 | |
| mod sig {
 | |
|     use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS};
 | |
|     use core::cmp::Ordering;
 | |
|     use core::mem;
 | |
| 
 | |
|     pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool {
 | |
|         limbs.iter().all(|&l| l == 0)
 | |
|     }
 | |
| 
 | |
|     /// One, not zero, based LSB. That is, returns 0 for a zeroed significand.
 | |
|     pub(super) fn olsb(limbs: &[Limb]) -> usize {
 | |
|         limbs
 | |
|             .iter()
 | |
|             .enumerate()
 | |
|             .find(|(_, &limb)| limb != 0)
 | |
|             .map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1)
 | |
|     }
 | |
| 
 | |
|     /// One, not zero, based MSB. That is, returns 0 for a zeroed significand.
 | |
|     pub(super) fn omsb(limbs: &[Limb]) -> usize {
 | |
|         limbs
 | |
|             .iter()
 | |
|             .enumerate()
 | |
|             .rfind(|(_, &limb)| limb != 0)
 | |
|             .map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize)
 | |
|     }
 | |
| 
 | |
|     /// Comparison (unsigned) of two significands.
 | |
|     pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering {
 | |
|         assert_eq!(a.len(), b.len());
 | |
|         for (a, b) in a.iter().zip(b).rev() {
 | |
|             match a.cmp(b) {
 | |
|                 Ordering::Equal => {}
 | |
|                 o => return o,
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         Ordering::Equal
 | |
|     }
 | |
| 
 | |
|     /// Extracts the given bit.
 | |
|     pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool {
 | |
|         limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0
 | |
|     }
 | |
| 
 | |
|     /// Sets the given bit.
 | |
|     pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) {
 | |
|         limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS);
 | |
|     }
 | |
| 
 | |
|     /// Clear the given bit.
 | |
|     pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) {
 | |
|         limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS));
 | |
|     }
 | |
| 
 | |
|     /// Shifts `dst` left `bits` bits, subtract `bits` from its exponent.
 | |
|     pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) {
 | |
|         if bits > 0 {
 | |
|             // Our exponent should not underflow.
 | |
|             *exp = exp.checked_sub(bits as ExpInt).unwrap();
 | |
| 
 | |
|             // Jump is the inter-limb jump; shift is the intra-limb shift.
 | |
|             let jump = bits / LIMB_BITS;
 | |
|             let shift = bits % LIMB_BITS;
 | |
| 
 | |
|             for i in (0..dst.len()).rev() {
 | |
|                 let mut limb;
 | |
| 
 | |
|                 if i < jump {
 | |
|                     limb = 0;
 | |
|                 } else {
 | |
|                     // dst[i] comes from the two limbs src[i - jump] and, if we have
 | |
|                     // an intra-limb shift, src[i - jump - 1].
 | |
|                     limb = dst[i - jump];
 | |
|                     if shift > 0 {
 | |
|                         limb <<= shift;
 | |
|                         if i > jump {
 | |
|                             limb |= dst[i - jump - 1] >> (LIMB_BITS - shift);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 dst[i] = limb;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Shifts `dst` right `bits` bits noting lost fraction.
 | |
|     pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss {
 | |
|         let loss = Loss::through_truncation(dst, bits);
 | |
| 
 | |
|         if bits > 0 {
 | |
|             // Our exponent should not overflow.
 | |
|             *exp = exp.checked_add(bits as ExpInt).unwrap();
 | |
| 
 | |
|             // Jump is the inter-limb jump; shift is the intra-limb shift.
 | |
|             let jump = bits / LIMB_BITS;
 | |
|             let shift = bits % LIMB_BITS;
 | |
| 
 | |
|             // Perform the shift. This leaves the most significant `bits` bits
 | |
|             // of the result at zero.
 | |
|             for i in 0..dst.len() {
 | |
|                 let mut limb;
 | |
| 
 | |
|                 if i + jump >= dst.len() {
 | |
|                     limb = 0;
 | |
|                 } else {
 | |
|                     limb = dst[i + jump];
 | |
|                     if shift > 0 {
 | |
|                         limb >>= shift;
 | |
|                         if i + jump + 1 < dst.len() {
 | |
|                             limb |= dst[i + jump + 1] << (LIMB_BITS - shift);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 dst[i] = limb;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         loss
 | |
|     }
 | |
| 
 | |
|     /// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB,
 | |
|     /// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`.
 | |
|     /// All high bits above `src_bits` in `dst` are zero-filled.
 | |
|     pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) {
 | |
|         if src_bits == 0 {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         let dst_limbs = limbs_for_bits(src_bits);
 | |
|         assert!(dst_limbs <= dst.len());
 | |
| 
 | |
|         let src = &src[src_lsb / LIMB_BITS..];
 | |
|         dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]);
 | |
| 
 | |
|         let shift = src_lsb % LIMB_BITS;
 | |
|         let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift);
 | |
| 
 | |
|         // We now have (dst_limbs * LIMB_BITS - shift) bits from `src`
 | |
|         // in `dst`.  If this is less that src_bits, append the rest, else
 | |
|         // clear the high bits.
 | |
|         let n = dst_limbs * LIMB_BITS - shift;
 | |
|         if n < src_bits {
 | |
|             let mask = (1 << (src_bits - n)) - 1;
 | |
|             dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS);
 | |
|         } else if n > src_bits && src_bits % LIMB_BITS > 0 {
 | |
|             dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1;
 | |
|         }
 | |
| 
 | |
|         // Clear high limbs.
 | |
|         for x in &mut dst[dst_limbs..] {
 | |
|             *x = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// We want the most significant PRECISION bits of `src`. There may not
 | |
|     /// be that many; extract what we can.
 | |
|     pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) {
 | |
|         let omsb = omsb(src);
 | |
| 
 | |
|         if precision <= omsb {
 | |
|             extract(dst, src, precision, omsb - precision);
 | |
|             (Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1)
 | |
|         } else {
 | |
|             extract(dst, src, omsb, 0);
 | |
|             (Loss::ExactlyZero, precision as ExpInt - 1)
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// For every consecutive chunk of `bits` bits from `limbs`,
 | |
|     /// going from most significant to the least significant bits,
 | |
|     /// call `f` to transform those bits and store the result back.
 | |
|     pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) {
 | |
|         assert_eq!(LIMB_BITS % bits, 0);
 | |
|         for limb in limbs.iter_mut().rev() {
 | |
|             let mut r = 0;
 | |
|             for i in (0..LIMB_BITS / bits).rev() {
 | |
|                 r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits);
 | |
|             }
 | |
|             *limb = r;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Increment in-place, return the carry flag.
 | |
|     pub(super) fn increment(dst: &mut [Limb]) -> Limb {
 | |
|         for x in dst {
 | |
|             *x = x.wrapping_add(1);
 | |
|             if *x != 0 {
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         1
 | |
|     }
 | |
| 
 | |
|     /// Decrement in-place, return the borrow flag.
 | |
|     pub(super) fn decrement(dst: &mut [Limb]) -> Limb {
 | |
|         for x in dst {
 | |
|             *x = x.wrapping_sub(1);
 | |
|             if *x != !0 {
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         1
 | |
|     }
 | |
| 
 | |
|     /// `a += b + c` where `c` is zero or one. Returns the carry flag.
 | |
|     pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
 | |
|         assert!(c <= 1);
 | |
| 
 | |
|         for (a, &b) in a.iter_mut().zip(b) {
 | |
|             let (r, overflow) = a.overflowing_add(b);
 | |
|             let (r, overflow2) = r.overflowing_add(c);
 | |
|             *a = r;
 | |
|             c = (overflow | overflow2) as Limb;
 | |
|         }
 | |
| 
 | |
|         c
 | |
|     }
 | |
| 
 | |
|     /// `a -= b + c` where `c` is zero or one. Returns the borrow flag.
 | |
|     pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
 | |
|         assert!(c <= 1);
 | |
| 
 | |
|         for (a, &b) in a.iter_mut().zip(b) {
 | |
|             let (r, overflow) = a.overflowing_sub(b);
 | |
|             let (r, overflow2) = r.overflowing_sub(c);
 | |
|             *a = r;
 | |
|             c = (overflow | overflow2) as Limb;
 | |
|         }
 | |
| 
 | |
|         c
 | |
|     }
 | |
| 
 | |
|     /// `a += b` or `a -= b`. Does not preserve `b`.
 | |
|     pub(super) fn add_or_sub(
 | |
|         a_sig: &mut [Limb],
 | |
|         a_exp: &mut ExpInt,
 | |
|         a_sign: &mut bool,
 | |
|         b_sig: &mut [Limb],
 | |
|         b_exp: ExpInt,
 | |
|         b_sign: bool,
 | |
|     ) -> Loss {
 | |
|         // Are we bigger exponent-wise than the RHS?
 | |
|         let bits = *a_exp - b_exp;
 | |
| 
 | |
|         // Determine if the operation on the absolute values is effectively
 | |
|         // an addition or subtraction.
 | |
|         // Subtraction is more subtle than one might naively expect.
 | |
|         if *a_sign ^ b_sign {
 | |
|             let (reverse, loss);
 | |
| 
 | |
|             if bits == 0 {
 | |
|                 reverse = cmp(a_sig, b_sig) == Ordering::Less;
 | |
|                 loss = Loss::ExactlyZero;
 | |
|             } else if bits > 0 {
 | |
|                 loss = shift_right(b_sig, &mut 0, (bits - 1) as usize);
 | |
|                 shift_left(a_sig, a_exp, 1);
 | |
|                 reverse = false;
 | |
|             } else {
 | |
|                 loss = shift_right(a_sig, a_exp, (-bits - 1) as usize);
 | |
|                 shift_left(b_sig, &mut 0, 1);
 | |
|                 reverse = true;
 | |
|             }
 | |
| 
 | |
|             let borrow = (loss != Loss::ExactlyZero) as Limb;
 | |
|             if reverse {
 | |
|                 // The code above is intended to ensure that no borrow is necessary.
 | |
|                 assert_eq!(sub(b_sig, a_sig, borrow), 0);
 | |
|                 a_sig.copy_from_slice(b_sig);
 | |
|                 *a_sign = !*a_sign;
 | |
|             } else {
 | |
|                 // The code above is intended to ensure that no borrow is necessary.
 | |
|                 assert_eq!(sub(a_sig, b_sig, borrow), 0);
 | |
|             }
 | |
| 
 | |
|             // Invert the lost fraction - it was on the RHS and subtracted.
 | |
|             match loss {
 | |
|                 Loss::LessThanHalf => Loss::MoreThanHalf,
 | |
|                 Loss::MoreThanHalf => Loss::LessThanHalf,
 | |
|                 _ => loss,
 | |
|             }
 | |
|         } else {
 | |
|             let loss = if bits > 0 {
 | |
|                 shift_right(b_sig, &mut 0, bits as usize)
 | |
|             } else {
 | |
|                 shift_right(a_sig, a_exp, -bits as usize)
 | |
|             };
 | |
|             // We have a guard bit; generating a carry cannot happen.
 | |
|             assert_eq!(add(a_sig, b_sig, 0), 0);
 | |
|             loss
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// `[low, high] = a * b`.
 | |
|     ///
 | |
|     /// This cannot overflow, because
 | |
|     ///
 | |
|     /// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)`
 | |
|     ///
 | |
|     /// which is less than n<sup>2</sup>.
 | |
|     pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] {
 | |
|         let mut wide = [0, 0];
 | |
| 
 | |
|         if a == 0 || b == 0 {
 | |
|             return wide;
 | |
|         }
 | |
| 
 | |
|         const HALF_BITS: usize = LIMB_BITS / 2;
 | |
| 
 | |
|         let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1);
 | |
|         for i in 0..2 {
 | |
|             for j in 0..2 {
 | |
|                 let mut x = [select(a, i) * select(b, j), 0];
 | |
|                 shift_left(&mut x, &mut 0, (i + j) * HALF_BITS);
 | |
|                 assert_eq!(add(&mut wide, &x, 0), 0);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         wide
 | |
|     }
 | |
| 
 | |
|     /// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction.
 | |
|     pub(super) fn mul<'a>(
 | |
|         dst: &mut [Limb],
 | |
|         exp: &mut ExpInt,
 | |
|         mut a: &'a [Limb],
 | |
|         mut b: &'a [Limb],
 | |
|         precision: usize,
 | |
|     ) -> Loss {
 | |
|         // Put the narrower number on the `a` for less loops below.
 | |
|         if a.len() > b.len() {
 | |
|             mem::swap(&mut a, &mut b);
 | |
|         }
 | |
| 
 | |
|         for x in &mut dst[..b.len()] {
 | |
|             *x = 0;
 | |
|         }
 | |
| 
 | |
|         for i in 0..a.len() {
 | |
|             let mut carry = 0;
 | |
|             for j in 0..b.len() {
 | |
|                 let [low, mut high] = widening_mul(a[i], b[j]);
 | |
| 
 | |
|                 // Now add carry.
 | |
|                 let (low, overflow) = low.overflowing_add(carry);
 | |
|                 high += overflow as Limb;
 | |
| 
 | |
|                 // And now `dst[i + j]`, and store the new low part there.
 | |
|                 let (low, overflow) = low.overflowing_add(dst[i + j]);
 | |
|                 high += overflow as Limb;
 | |
| 
 | |
|                 dst[i + j] = low;
 | |
|                 carry = high;
 | |
|             }
 | |
|             dst[i + b.len()] = carry;
 | |
|         }
 | |
| 
 | |
|         // Assume the operands involved in the multiplication are single-precision
 | |
|         // FP, and the two multiplicants are:
 | |
|         //     a = a23 . a22 ... a0 * 2^e1
 | |
|         //     b = b23 . b22 ... b0 * 2^e2
 | |
|         // the result of multiplication is:
 | |
|         //     dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
 | |
|         // Note that there are three significant bits at the left-hand side of the
 | |
|         // radix point: two for the multiplication, and an overflow bit for the
 | |
|         // addition (that will always be zero at this point). Move the radix point
 | |
|         // toward left by two bits, and adjust exponent accordingly.
 | |
|         *exp += 2;
 | |
| 
 | |
|         // Convert the result having "2 * precision" significant-bits back to the one
 | |
|         // having "precision" significant-bits. First, move the radix point from
 | |
|         // poision "2*precision - 1" to "precision - 1". The exponent need to be
 | |
|         // adjusted by "2*precision - 1" - "precision - 1" = "precision".
 | |
|         *exp -= precision as ExpInt + 1;
 | |
| 
 | |
|         // In case MSB resides at the left-hand side of radix point, shift the
 | |
|         // mantissa right by some amount to make sure the MSB reside right before
 | |
|         // the radix point (i.e., "MSB . rest-significant-bits").
 | |
|         //
 | |
|         // Note that the result is not normalized when "omsb < precision". So, the
 | |
|         // caller needs to call IeeeFloat::normalize() if normalized value is
 | |
|         // expected.
 | |
|         let omsb = omsb(dst);
 | |
|         if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) }
 | |
|     }
 | |
| 
 | |
|     /// `quotient = dividend / divisor`. Returns the lost fraction.
 | |
|     /// Does not preserve `dividend` or `divisor`.
 | |
|     pub(super) fn div(
 | |
|         quotient: &mut [Limb],
 | |
|         exp: &mut ExpInt,
 | |
|         dividend: &mut [Limb],
 | |
|         divisor: &mut [Limb],
 | |
|         precision: usize,
 | |
|     ) -> Loss {
 | |
|         // Normalize the divisor.
 | |
|         let bits = precision - omsb(divisor);
 | |
|         shift_left(divisor, &mut 0, bits);
 | |
|         *exp += bits as ExpInt;
 | |
| 
 | |
|         // Normalize the dividend.
 | |
|         let bits = precision - omsb(dividend);
 | |
|         shift_left(dividend, exp, bits);
 | |
| 
 | |
|         // Division by 1.
 | |
|         let olsb_divisor = olsb(divisor);
 | |
|         if olsb_divisor == precision {
 | |
|             quotient.copy_from_slice(dividend);
 | |
|             return Loss::ExactlyZero;
 | |
|         }
 | |
| 
 | |
|         // Ensure the dividend >= divisor initially for the loop below.
 | |
|         // Incidentally, this means that the division loop below is
 | |
|         // guaranteed to set the integer bit to one.
 | |
|         if cmp(dividend, divisor) == Ordering::Less {
 | |
|             shift_left(dividend, exp, 1);
 | |
|             assert_ne!(cmp(dividend, divisor), Ordering::Less)
 | |
|         }
 | |
| 
 | |
|         // Helper for figuring out the lost fraction.
 | |
|         let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) {
 | |
|             Ordering::Greater => Loss::MoreThanHalf,
 | |
|             Ordering::Equal => Loss::ExactlyHalf,
 | |
|             Ordering::Less => {
 | |
|                 if is_all_zeros(dividend) {
 | |
|                     Loss::ExactlyZero
 | |
|                 } else {
 | |
|                     Loss::LessThanHalf
 | |
|                 }
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         // Try to perform a (much faster) short division for small divisors.
 | |
|         let divisor_bits = precision - (olsb_divisor - 1);
 | |
|         macro_rules! try_short_div {
 | |
|             ($W:ty, $H:ty, $half:expr) => {
 | |
|                 if divisor_bits * 2 <= $half {
 | |
|                     // Extract the small divisor.
 | |
|                     let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1);
 | |
|                     let divisor = divisor[0] as $H as $W;
 | |
| 
 | |
|                     // Shift the dividend to produce a quotient with the unit bit set.
 | |
|                     let top_limb = *dividend.last().unwrap();
 | |
|                     let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H;
 | |
|                     shift_left(dividend, &mut 0, divisor_bits - 1);
 | |
| 
 | |
|                     // Apply short division in place on $H (of $half bits) chunks.
 | |
|                     each_chunk(dividend, $half, |chunk| {
 | |
|                         let chunk = chunk as $H;
 | |
|                         let combined = ((rem as $W) << $half) | (chunk as $W);
 | |
|                         rem = (combined % divisor) as $H;
 | |
|                         (combined / divisor) as $H as Limb
 | |
|                     });
 | |
|                     quotient.copy_from_slice(dividend);
 | |
| 
 | |
|                     return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]);
 | |
|                 }
 | |
|             };
 | |
|         }
 | |
| 
 | |
|         try_short_div!(u32, u16, 16);
 | |
|         try_short_div!(u64, u32, 32);
 | |
|         try_short_div!(u128, u64, 64);
 | |
| 
 | |
|         // Zero the quotient before setting bits in it.
 | |
|         for x in &mut quotient[..limbs_for_bits(precision)] {
 | |
|             *x = 0;
 | |
|         }
 | |
| 
 | |
|         // Long division.
 | |
|         for bit in (0..precision).rev() {
 | |
|             if cmp(dividend, divisor) != Ordering::Less {
 | |
|                 sub(dividend, divisor, 0);
 | |
|                 set_bit(quotient, bit);
 | |
|             }
 | |
|             shift_left(dividend, &mut 0, 1);
 | |
|         }
 | |
| 
 | |
|         lost_fraction(dividend, divisor)
 | |
|     }
 | |
| }
 |