2021-10-20 18:41:28 +02:00

736 lines
25 KiB
Rust

//! The implementation of the query system itself. This defines the macros that
//! generate the actual methods on tcx which find and execute the provider,
//! manage the caches, and so forth.
use crate::dep_graph::{DepContext, DepNode, DepNodeIndex, DepNodeParams};
use crate::query::caches::QueryCache;
use crate::query::config::{QueryDescription, QueryVtable, QueryVtableExt};
use crate::query::job::{
report_cycle, QueryInfo, QueryJob, QueryJobId, QueryJobInfo, QueryShardJobId,
};
use crate::query::{QueryContext, QueryMap, QuerySideEffects, QueryStackFrame};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHasher};
#[cfg(parallel_compiler)]
use rustc_data_structures::profiling::TimingGuard;
use rustc_data_structures::sharded::{get_shard_index_by_hash, Sharded};
use rustc_data_structures::sync::{Lock, LockGuard};
use rustc_data_structures::thin_vec::ThinVec;
use rustc_errors::{DiagnosticBuilder, FatalError};
use rustc_span::{Span, DUMMY_SP};
use std::cell::Cell;
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::mem;
use std::num::NonZeroU32;
use std::ptr;
pub struct QueryCacheStore<C: QueryCache> {
cache: C,
shards: Sharded<C::Sharded>,
}
impl<C: QueryCache + Default> Default for QueryCacheStore<C> {
fn default() -> Self {
Self { cache: C::default(), shards: Default::default() }
}
}
/// Values used when checking a query cache which can be reused on a cache-miss to execute the query.
pub struct QueryLookup {
pub(super) key_hash: u64,
shard: usize,
}
// We compute the key's hash once and then use it for both the
// shard lookup and the hashmap lookup. This relies on the fact
// that both of them use `FxHasher`.
fn hash_for_shard<K: Hash>(key: &K) -> u64 {
let mut hasher = FxHasher::default();
key.hash(&mut hasher);
hasher.finish()
}
impl<C: QueryCache> QueryCacheStore<C> {
pub(super) fn get_lookup<'tcx>(
&'tcx self,
key: &C::Key,
) -> (QueryLookup, LockGuard<'tcx, C::Sharded>) {
let key_hash = hash_for_shard(key);
let shard = get_shard_index_by_hash(key_hash);
let lock = self.shards.get_shard_by_index(shard).lock();
(QueryLookup { key_hash, shard }, lock)
}
pub fn iter_results(&self, f: &mut dyn FnMut(&C::Key, &C::Value, DepNodeIndex)) {
self.cache.iter(&self.shards, f)
}
}
struct QueryStateShard<D, K> {
active: FxHashMap<K, QueryResult<D>>,
/// Used to generate unique ids for active jobs.
jobs: u32,
}
impl<D, K> Default for QueryStateShard<D, K> {
fn default() -> QueryStateShard<D, K> {
QueryStateShard { active: Default::default(), jobs: 0 }
}
}
pub struct QueryState<D, K> {
shards: Sharded<QueryStateShard<D, K>>,
}
/// Indicates the state of a query for a given key in a query map.
enum QueryResult<D> {
/// An already executing query. The query job can be used to await for its completion.
Started(QueryJob<D>),
/// The query panicked. Queries trying to wait on this will raise a fatal error which will
/// silently panic.
Poisoned,
}
impl<D, K> QueryState<D, K>
where
D: Copy + Clone + Eq + Hash,
K: Eq + Hash + Clone + Debug,
{
pub fn all_inactive(&self) -> bool {
let shards = self.shards.lock_shards();
shards.iter().all(|shard| shard.active.is_empty())
}
pub fn try_collect_active_jobs<CTX: Copy>(
&self,
tcx: CTX,
kind: D,
make_query: fn(CTX, K) -> QueryStackFrame,
jobs: &mut QueryMap<D>,
) -> Option<()> {
// We use try_lock_shards here since we are called from the
// deadlock handler, and this shouldn't be locked.
let shards = self.shards.try_lock_shards()?;
for (shard_id, shard) in shards.iter().enumerate() {
for (k, v) in shard.active.iter() {
if let QueryResult::Started(ref job) = *v {
let id = QueryJobId::new(job.id, shard_id, kind);
let query = make_query(tcx, k.clone());
jobs.insert(id, QueryJobInfo { query, job: job.clone() });
}
}
}
Some(())
}
}
impl<D, K> Default for QueryState<D, K> {
fn default() -> QueryState<D, K> {
QueryState { shards: Default::default() }
}
}
/// A type representing the responsibility to execute the job in the `job` field.
/// This will poison the relevant query if dropped.
struct JobOwner<'tcx, D, K>
where
D: Copy + Clone + Eq + Hash,
K: Eq + Hash + Clone,
{
state: &'tcx QueryState<D, K>,
key: K,
id: QueryJobId<D>,
}
#[cold]
#[inline(never)]
fn mk_cycle<CTX, V, R>(
tcx: CTX,
error: CycleError,
handle_cycle_error: fn(CTX, DiagnosticBuilder<'_>) -> V,
cache: &dyn crate::query::QueryStorage<Value = V, Stored = R>,
) -> R
where
CTX: QueryContext,
V: std::fmt::Debug,
R: Clone,
{
let error = report_cycle(tcx.dep_context().sess(), error);
let value = handle_cycle_error(tcx, error);
cache.store_nocache(value)
}
impl<'tcx, D, K> JobOwner<'tcx, D, K>
where
D: Copy + Clone + Eq + Hash,
K: Eq + Hash + Clone,
{
/// Either gets a `JobOwner` corresponding the query, allowing us to
/// start executing the query, or returns with the result of the query.
/// This function assumes that `try_get_cached` is already called and returned `lookup`.
/// If the query is executing elsewhere, this will wait for it and return the result.
/// If the query panicked, this will silently panic.
///
/// This function is inlined because that results in a noticeable speed-up
/// for some compile-time benchmarks.
#[inline(always)]
fn try_start<'b, CTX>(
tcx: &'b CTX,
state: &'b QueryState<CTX::DepKind, K>,
span: Span,
key: K,
lookup: QueryLookup,
dep_kind: CTX::DepKind,
) -> TryGetJob<'b, CTX::DepKind, K>
where
CTX: QueryContext,
{
let shard = lookup.shard;
let mut state_lock = state.shards.get_shard_by_index(shard).lock();
let lock = &mut *state_lock;
match lock.active.entry(key) {
Entry::Vacant(entry) => {
// Generate an id unique within this shard.
let id = lock.jobs.checked_add(1).unwrap();
lock.jobs = id;
let id = QueryShardJobId(NonZeroU32::new(id).unwrap());
let job = tcx.current_query_job();
let job = QueryJob::new(id, span, job);
let key = entry.key().clone();
entry.insert(QueryResult::Started(job));
let global_id = QueryJobId::new(id, shard, dep_kind);
let owner = JobOwner { state, id: global_id, key };
return TryGetJob::NotYetStarted(owner);
}
Entry::Occupied(mut entry) => {
match entry.get_mut() {
#[cfg(not(parallel_compiler))]
QueryResult::Started(job) => {
let id = QueryJobId::new(job.id, shard, dep_kind);
drop(state_lock);
// If we are single-threaded we know that we have cycle error,
// so we just return the error.
return TryGetJob::Cycle(id.find_cycle_in_stack(
tcx.try_collect_active_jobs().unwrap(),
&tcx.current_query_job(),
span,
));
}
#[cfg(parallel_compiler)]
QueryResult::Started(job) => {
// For parallel queries, we'll block and wait until the query running
// in another thread has completed. Record how long we wait in the
// self-profiler.
let query_blocked_prof_timer = tcx.dep_context().profiler().query_blocked();
// Get the latch out
let latch = job.latch();
drop(state_lock);
// With parallel queries we might just have to wait on some other
// thread.
let result = latch.wait_on(tcx.current_query_job(), span);
match result {
Ok(()) => TryGetJob::JobCompleted(query_blocked_prof_timer),
Err(cycle) => TryGetJob::Cycle(cycle),
}
}
QueryResult::Poisoned => FatalError.raise(),
}
}
}
}
/// Completes the query by updating the query cache with the `result`,
/// signals the waiter and forgets the JobOwner, so it won't poison the query
fn complete<C>(
self,
cache: &QueryCacheStore<C>,
result: C::Value,
dep_node_index: DepNodeIndex,
) -> C::Stored
where
C: QueryCache<Key = K>,
{
// We can move out of `self` here because we `mem::forget` it below
let key = unsafe { ptr::read(&self.key) };
let state = self.state;
// Forget ourself so our destructor won't poison the query
mem::forget(self);
let (job, result) = {
let key_hash = hash_for_shard(&key);
let shard = get_shard_index_by_hash(key_hash);
let job = {
let mut lock = state.shards.get_shard_by_index(shard).lock();
match lock.active.remove(&key).unwrap() {
QueryResult::Started(job) => job,
QueryResult::Poisoned => panic!(),
}
};
let result = {
let mut lock = cache.shards.get_shard_by_index(shard).lock();
cache.cache.complete(&mut lock, key, result, dep_node_index)
};
(job, result)
};
job.signal_complete();
result
}
}
impl<'tcx, D, K> Drop for JobOwner<'tcx, D, K>
where
D: Copy + Clone + Eq + Hash,
K: Eq + Hash + Clone,
{
#[inline(never)]
#[cold]
fn drop(&mut self) {
// Poison the query so jobs waiting on it panic.
let state = self.state;
let shard = state.shards.get_shard_by_value(&self.key);
let job = {
let mut shard = shard.lock();
let job = match shard.active.remove(&self.key).unwrap() {
QueryResult::Started(job) => job,
QueryResult::Poisoned => panic!(),
};
shard.active.insert(self.key.clone(), QueryResult::Poisoned);
job
};
// Also signal the completion of the job, so waiters
// will continue execution.
job.signal_complete();
}
}
#[derive(Clone)]
pub(crate) struct CycleError {
/// The query and related span that uses the cycle.
pub usage: Option<(Span, QueryStackFrame)>,
pub cycle: Vec<QueryInfo>,
}
/// The result of `try_start`.
enum TryGetJob<'tcx, D, K>
where
D: Copy + Clone + Eq + Hash,
K: Eq + Hash + Clone,
{
/// The query is not yet started. Contains a guard to the cache eventually used to start it.
NotYetStarted(JobOwner<'tcx, D, K>),
/// The query was already completed.
/// Returns the result of the query and its dep-node index
/// if it succeeded or a cycle error if it failed.
#[cfg(parallel_compiler)]
JobCompleted(TimingGuard<'tcx>),
/// Trying to execute the query resulted in a cycle.
Cycle(CycleError),
}
/// Checks if the query is already computed and in the cache.
/// It returns the shard index and a lock guard to the shard,
/// which will be used if the query is not in the cache and we need
/// to compute it.
#[inline]
pub fn try_get_cached<'a, CTX, C, R, OnHit>(
tcx: CTX,
cache: &'a QueryCacheStore<C>,
key: &C::Key,
// `on_hit` can be called while holding a lock to the query cache
on_hit: OnHit,
) -> Result<R, QueryLookup>
where
C: QueryCache,
CTX: DepContext,
OnHit: FnOnce(&C::Stored) -> R,
{
cache.cache.lookup(cache, &key, |value, index| {
if unlikely!(tcx.profiler().enabled()) {
tcx.profiler().query_cache_hit(index.into());
}
tcx.dep_graph().read_index(index);
on_hit(value)
})
}
fn try_execute_query<CTX, C>(
tcx: CTX,
state: &QueryState<CTX::DepKind, C::Key>,
cache: &QueryCacheStore<C>,
span: Span,
key: C::Key,
lookup: QueryLookup,
dep_node: Option<DepNode<CTX::DepKind>>,
query: &QueryVtable<CTX, C::Key, C::Value>,
) -> (C::Stored, Option<DepNodeIndex>)
where
C: QueryCache,
C::Key: Clone + DepNodeParams<CTX::DepContext>,
CTX: QueryContext,
{
match JobOwner::<'_, CTX::DepKind, C::Key>::try_start(
&tcx,
state,
span,
key.clone(),
lookup,
query.dep_kind,
) {
TryGetJob::NotYetStarted(job) => {
let (result, dep_node_index) = execute_job(tcx, key, dep_node, query, job.id);
let result = job.complete(cache, result, dep_node_index);
(result, Some(dep_node_index))
}
TryGetJob::Cycle(error) => {
let result = mk_cycle(tcx, error, query.handle_cycle_error, &cache.cache);
(result, None)
}
#[cfg(parallel_compiler)]
TryGetJob::JobCompleted(query_blocked_prof_timer) => {
let (v, index) = cache
.cache
.lookup(cache, &key, |value, index| (value.clone(), index))
.unwrap_or_else(|_| panic!("value must be in cache after waiting"));
if unlikely!(tcx.dep_context().profiler().enabled()) {
tcx.dep_context().profiler().query_cache_hit(index.into());
}
query_blocked_prof_timer.finish_with_query_invocation_id(index.into());
(v, Some(index))
}
}
}
fn execute_job<CTX, K, V>(
tcx: CTX,
key: K,
mut dep_node_opt: Option<DepNode<CTX::DepKind>>,
query: &QueryVtable<CTX, K, V>,
job_id: QueryJobId<CTX::DepKind>,
) -> (V, DepNodeIndex)
where
K: Clone + DepNodeParams<CTX::DepContext>,
V: Debug,
CTX: QueryContext,
{
let dep_graph = tcx.dep_context().dep_graph();
// Fast path for when incr. comp. is off.
if !dep_graph.is_fully_enabled() {
let prof_timer = tcx.dep_context().profiler().query_provider();
let result = tcx.start_query(job_id, None, || query.compute(*tcx.dep_context(), key));
let dep_node_index = dep_graph.next_virtual_depnode_index();
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
return (result, dep_node_index);
}
if !query.anon && !query.eval_always {
// `to_dep_node` is expensive for some `DepKind`s.
let dep_node =
dep_node_opt.get_or_insert_with(|| query.to_dep_node(*tcx.dep_context(), &key));
// The diagnostics for this query will be promoted to the current session during
// `try_mark_green()`, so we can ignore them here.
if let Some(ret) = tcx.start_query(job_id, None, || {
try_load_from_disk_and_cache_in_memory(tcx, &key, &dep_node, query)
}) {
return ret;
}
}
let prof_timer = tcx.dep_context().profiler().query_provider();
let diagnostics = Lock::new(ThinVec::new());
let (result, dep_node_index) = tcx.start_query(job_id, Some(&diagnostics), || {
if query.anon {
return dep_graph.with_anon_task(*tcx.dep_context(), query.dep_kind, || {
query.compute(*tcx.dep_context(), key)
});
}
// `to_dep_node` is expensive for some `DepKind`s.
let dep_node = dep_node_opt.unwrap_or_else(|| query.to_dep_node(*tcx.dep_context(), &key));
dep_graph.with_task(dep_node, *tcx.dep_context(), key, query.compute, query.hash_result)
});
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
let diagnostics = diagnostics.into_inner();
let side_effects = QuerySideEffects { diagnostics };
if unlikely!(!side_effects.is_empty()) {
if query.anon {
tcx.store_side_effects_for_anon_node(dep_node_index, side_effects);
} else {
tcx.store_side_effects(dep_node_index, side_effects);
}
}
(result, dep_node_index)
}
fn try_load_from_disk_and_cache_in_memory<CTX, K, V>(
tcx: CTX,
key: &K,
dep_node: &DepNode<CTX::DepKind>,
query: &QueryVtable<CTX, K, V>,
) -> Option<(V, DepNodeIndex)>
where
K: Clone,
CTX: QueryContext,
V: Debug,
{
// Note this function can be called concurrently from the same query
// We must ensure that this is handled correctly.
let dep_graph = tcx.dep_context().dep_graph();
let (prev_dep_node_index, dep_node_index) = dep_graph.try_mark_green(tcx, &dep_node)?;
debug_assert!(dep_graph.is_green(dep_node));
// First we try to load the result from the on-disk cache.
// Some things are never cached on disk.
if query.cache_on_disk(tcx, key, None) {
let prof_timer = tcx.dep_context().profiler().incr_cache_loading();
let result = query.try_load_from_disk(tcx, prev_dep_node_index);
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
if let Some(result) = result {
// If `-Zincremental-verify-ich` is specified, re-hash results from
// the cache and make sure that they have the expected fingerprint.
if unlikely!(tcx.dep_context().sess().opts.debugging_opts.incremental_verify_ich) {
incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
}
return Some((result, dep_node_index));
}
// We always expect to find a cached result for things that
// can be forced from `DepNode`.
debug_assert!(
!tcx.dep_context().fingerprint_style(dep_node.kind).reconstructible(),
"missing on-disk cache entry for {:?}",
dep_node
);
}
// We could not load a result from the on-disk cache, so
// recompute.
let prof_timer = tcx.dep_context().profiler().query_provider();
// The dep-graph for this computation is already in-place.
let result = dep_graph.with_ignore(|| query.compute(*tcx.dep_context(), key.clone()));
prof_timer.finish_with_query_invocation_id(dep_node_index.into());
// Verify that re-running the query produced a result with the expected hash
// This catches bugs in query implementations, turning them into ICEs.
// For example, a query might sort its result by `DefId` - since `DefId`s are
// not stable across compilation sessions, the result could get up getting sorted
// in a different order when the query is re-run, even though all of the inputs
// (e.g. `DefPathHash` values) were green.
//
// See issue #82920 for an example of a miscompilation that would get turned into
// an ICE by this check
incremental_verify_ich(*tcx.dep_context(), &result, dep_node, query);
Some((result, dep_node_index))
}
fn incremental_verify_ich<CTX, K, V: Debug>(
tcx: CTX::DepContext,
result: &V,
dep_node: &DepNode<CTX::DepKind>,
query: &QueryVtable<CTX, K, V>,
) where
CTX: QueryContext,
{
assert!(
tcx.dep_graph().is_green(dep_node),
"fingerprint for green query instance not loaded from cache: {:?}",
dep_node,
);
debug!("BEGIN verify_ich({:?})", dep_node);
let new_hash = query.hash_result.map_or(Fingerprint::ZERO, |f| {
let mut hcx = tcx.create_stable_hashing_context();
f(&mut hcx, result)
});
let old_hash = tcx.dep_graph().prev_fingerprint_of(dep_node);
debug!("END verify_ich({:?})", dep_node);
if Some(new_hash) != old_hash {
let run_cmd = if let Some(crate_name) = &tcx.sess().opts.crate_name {
format!("`cargo clean -p {}` or `cargo clean`", crate_name)
} else {
"`cargo clean`".to_string()
};
// When we emit an error message and panic, we try to debug-print the `DepNode`
// and query result. Unforunately, this can cause us to run additional queries,
// which may result in another fingerprint mismatch while we're in the middle
// of processing this one. To avoid a double-panic (which kills the process
// before we can print out the query static), we print out a terse
// but 'safe' message if we detect a re-entrant call to this method.
thread_local! {
static INSIDE_VERIFY_PANIC: Cell<bool> = const { Cell::new(false) };
};
let old_in_panic = INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.replace(true));
if old_in_panic {
tcx.sess().struct_err("internal compiler error: re-entrant incremental verify failure, suppressing message")
.emit();
} else {
tcx.sess().struct_err(&format!("internal compiler error: encountered incremental compilation error with {:?}", dep_node))
.help(&format!("This is a known issue with the compiler. Run {} to allow your project to compile", run_cmd))
.note(&"Please follow the instructions below to create a bug report with the provided information")
.note(&"See <https://github.com/rust-lang/rust/issues/84970> for more information")
.emit();
panic!("Found unstable fingerprints for {:?}: {:?}", dep_node, result);
}
INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.set(old_in_panic));
}
}
/// Ensure that either this query has all green inputs or been executed.
/// Executing `query::ensure(D)` is considered a read of the dep-node `D`.
/// Returns true if the query should still run.
///
/// This function is particularly useful when executing passes for their
/// side-effects -- e.g., in order to report errors for erroneous programs.
///
/// Note: The optimization is only available during incr. comp.
#[inline(never)]
fn ensure_must_run<CTX, K, V>(
tcx: CTX,
key: &K,
query: &QueryVtable<CTX, K, V>,
) -> (bool, Option<DepNode<CTX::DepKind>>)
where
K: crate::dep_graph::DepNodeParams<CTX::DepContext>,
CTX: QueryContext,
{
if query.eval_always {
return (true, None);
}
// Ensuring an anonymous query makes no sense
assert!(!query.anon);
let dep_node = query.to_dep_node(*tcx.dep_context(), key);
let dep_graph = tcx.dep_context().dep_graph();
match dep_graph.try_mark_green(tcx, &dep_node) {
None => {
// A None return from `try_mark_green` means that this is either
// a new dep node or that the dep node has already been marked red.
// Either way, we can't call `dep_graph.read()` as we don't have the
// DepNodeIndex. We must invoke the query itself. The performance cost
// this introduces should be negligible as we'll immediately hit the
// in-memory cache, or another query down the line will.
(true, Some(dep_node))
}
Some((_, dep_node_index)) => {
dep_graph.read_index(dep_node_index);
tcx.dep_context().profiler().query_cache_hit(dep_node_index.into());
(false, None)
}
}
}
pub enum QueryMode {
Get,
Ensure,
}
pub fn get_query<Q, CTX>(
tcx: CTX,
span: Span,
key: Q::Key,
lookup: QueryLookup,
mode: QueryMode,
) -> Option<Q::Stored>
where
Q: QueryDescription<CTX>,
Q::Key: DepNodeParams<CTX::DepContext>,
CTX: QueryContext,
{
let query = Q::make_vtable(tcx, &key);
let dep_node = if let QueryMode::Ensure = mode {
let (must_run, dep_node) = ensure_must_run(tcx, &key, &query);
if !must_run {
return None;
}
dep_node
} else {
None
};
debug!("ty::query::get_query<{}>(key={:?}, span={:?})", Q::NAME, key, span);
let (result, dep_node_index) = try_execute_query(
tcx,
Q::query_state(tcx),
Q::query_cache(tcx),
span,
key,
lookup,
dep_node,
&query,
);
if let Some(dep_node_index) = dep_node_index {
tcx.dep_context().dep_graph().read_index(dep_node_index)
}
Some(result)
}
pub fn force_query<Q, CTX>(tcx: CTX, key: Q::Key, dep_node: DepNode<CTX::DepKind>)
where
Q: QueryDescription<CTX>,
Q::Key: DepNodeParams<CTX::DepContext>,
CTX: QueryContext,
{
debug_assert!(!Q::ANON);
// We may be concurrently trying both execute and force a query.
// Ensure that only one of them runs the query.
let cache = Q::query_cache(tcx);
let cached = cache.cache.lookup(cache, &key, |_, index| {
if unlikely!(tcx.dep_context().profiler().enabled()) {
tcx.dep_context().profiler().query_cache_hit(index.into());
}
});
let lookup = match cached {
Ok(()) => return,
Err(lookup) => lookup,
};
let query = Q::make_vtable(tcx, &key);
let state = Q::query_state(tcx);
try_execute_query(tcx, state, cache, DUMMY_SP, key, lookup, Some(dep_node), &query);
}