mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-30 12:36:38 +00:00
1224 lines
47 KiB
Rust
1224 lines
47 KiB
Rust
use std::ffi::{CStr, CString};
|
|
use std::io::{self, Write};
|
|
use std::path::{Path, PathBuf};
|
|
use std::ptr::null_mut;
|
|
use std::sync::Arc;
|
|
use std::{fs, slice, str};
|
|
|
|
use libc::{c_char, c_int, c_void, size_t};
|
|
use llvm::{
|
|
LLVMRustLLVMHasZlibCompressionForDebugSymbols, LLVMRustLLVMHasZstdCompressionForDebugSymbols,
|
|
};
|
|
use rustc_codegen_ssa::back::link::ensure_removed;
|
|
use rustc_codegen_ssa::back::versioned_llvm_target;
|
|
use rustc_codegen_ssa::back::write::{
|
|
BitcodeSection, CodegenContext, EmitObj, ModuleConfig, TargetMachineFactoryConfig,
|
|
TargetMachineFactoryFn,
|
|
};
|
|
use rustc_codegen_ssa::base::wants_wasm_eh;
|
|
use rustc_codegen_ssa::traits::*;
|
|
use rustc_codegen_ssa::{CompiledModule, ModuleCodegen, ModuleKind};
|
|
use rustc_data_structures::profiling::SelfProfilerRef;
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_errors::{DiagCtxtHandle, Level};
|
|
use rustc_fs_util::{link_or_copy, path_to_c_string};
|
|
use rustc_middle::ty::TyCtxt;
|
|
use rustc_session::Session;
|
|
use rustc_session::config::{
|
|
self, Lto, OutputType, Passes, RemapPathScopeComponents, SplitDwarfKind, SwitchWithOptPath,
|
|
};
|
|
use rustc_span::{BytePos, InnerSpan, Pos, SpanData, SyntaxContext, sym};
|
|
use rustc_target::spec::{CodeModel, FloatAbi, RelocModel, SanitizerSet, SplitDebuginfo, TlsModel};
|
|
use tracing::{debug, trace};
|
|
|
|
use crate::back::lto::ThinBuffer;
|
|
use crate::back::owned_target_machine::OwnedTargetMachine;
|
|
use crate::back::profiling::{
|
|
LlvmSelfProfiler, selfprofile_after_pass_callback, selfprofile_before_pass_callback,
|
|
};
|
|
use crate::common::AsCCharPtr;
|
|
use crate::errors::{
|
|
CopyBitcode, FromLlvmDiag, FromLlvmOptimizationDiag, LlvmError, UnknownCompression,
|
|
WithLlvmError, WriteBytecode,
|
|
};
|
|
use crate::llvm::diagnostic::OptimizationDiagnosticKind::*;
|
|
use crate::llvm::{self, DiagnosticInfo};
|
|
use crate::type_::Type;
|
|
use crate::{LlvmCodegenBackend, ModuleLlvm, base, common, llvm_util};
|
|
|
|
pub(crate) fn llvm_err<'a>(dcx: DiagCtxtHandle<'_>, err: LlvmError<'a>) -> ! {
|
|
match llvm::last_error() {
|
|
Some(llvm_err) => dcx.emit_fatal(WithLlvmError(err, llvm_err)),
|
|
None => dcx.emit_fatal(err),
|
|
}
|
|
}
|
|
|
|
fn write_output_file<'ll>(
|
|
dcx: DiagCtxtHandle<'_>,
|
|
target: &'ll llvm::TargetMachine,
|
|
no_builtins: bool,
|
|
m: &'ll llvm::Module,
|
|
output: &Path,
|
|
dwo_output: Option<&Path>,
|
|
file_type: llvm::FileType,
|
|
self_profiler_ref: &SelfProfilerRef,
|
|
verify_llvm_ir: bool,
|
|
) {
|
|
debug!("write_output_file output={:?} dwo_output={:?}", output, dwo_output);
|
|
let output_c = path_to_c_string(output);
|
|
let dwo_output_c;
|
|
let dwo_output_ptr = if let Some(dwo_output) = dwo_output {
|
|
dwo_output_c = path_to_c_string(dwo_output);
|
|
dwo_output_c.as_ptr()
|
|
} else {
|
|
std::ptr::null()
|
|
};
|
|
let result = unsafe {
|
|
let pm = llvm::LLVMCreatePassManager();
|
|
llvm::LLVMAddAnalysisPasses(target, pm);
|
|
llvm::LLVMRustAddLibraryInfo(pm, m, no_builtins);
|
|
llvm::LLVMRustWriteOutputFile(
|
|
target,
|
|
pm,
|
|
m,
|
|
output_c.as_ptr(),
|
|
dwo_output_ptr,
|
|
file_type,
|
|
verify_llvm_ir,
|
|
)
|
|
};
|
|
|
|
// Record artifact sizes for self-profiling
|
|
if result == llvm::LLVMRustResult::Success {
|
|
let artifact_kind = match file_type {
|
|
llvm::FileType::ObjectFile => "object_file",
|
|
llvm::FileType::AssemblyFile => "assembly_file",
|
|
};
|
|
record_artifact_size(self_profiler_ref, artifact_kind, output);
|
|
if let Some(dwo_file) = dwo_output {
|
|
record_artifact_size(self_profiler_ref, "dwo_file", dwo_file);
|
|
}
|
|
}
|
|
|
|
result.into_result().unwrap_or_else(|()| llvm_err(dcx, LlvmError::WriteOutput { path: output }))
|
|
}
|
|
|
|
pub(crate) fn create_informational_target_machine(
|
|
sess: &Session,
|
|
only_base_features: bool,
|
|
) -> OwnedTargetMachine {
|
|
let config = TargetMachineFactoryConfig { split_dwarf_file: None, output_obj_file: None };
|
|
// Can't use query system here quite yet because this function is invoked before the query
|
|
// system/tcx is set up.
|
|
let features = llvm_util::global_llvm_features(sess, false, only_base_features);
|
|
target_machine_factory(sess, config::OptLevel::No, &features)(config)
|
|
.unwrap_or_else(|err| llvm_err(sess.dcx(), err))
|
|
}
|
|
|
|
pub(crate) fn create_target_machine(tcx: TyCtxt<'_>, mod_name: &str) -> OwnedTargetMachine {
|
|
let split_dwarf_file = if tcx.sess.target_can_use_split_dwarf() {
|
|
tcx.output_filenames(()).split_dwarf_path(
|
|
tcx.sess.split_debuginfo(),
|
|
tcx.sess.opts.unstable_opts.split_dwarf_kind,
|
|
mod_name,
|
|
tcx.sess.invocation_temp.as_deref(),
|
|
)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let output_obj_file = Some(tcx.output_filenames(()).temp_path_for_cgu(
|
|
OutputType::Object,
|
|
mod_name,
|
|
tcx.sess.invocation_temp.as_deref(),
|
|
));
|
|
let config = TargetMachineFactoryConfig { split_dwarf_file, output_obj_file };
|
|
|
|
target_machine_factory(
|
|
tcx.sess,
|
|
tcx.backend_optimization_level(()),
|
|
tcx.global_backend_features(()),
|
|
)(config)
|
|
.unwrap_or_else(|err| llvm_err(tcx.dcx(), err))
|
|
}
|
|
|
|
fn to_llvm_opt_settings(cfg: config::OptLevel) -> (llvm::CodeGenOptLevel, llvm::CodeGenOptSize) {
|
|
use self::config::OptLevel::*;
|
|
match cfg {
|
|
No => (llvm::CodeGenOptLevel::None, llvm::CodeGenOptSizeNone),
|
|
Less => (llvm::CodeGenOptLevel::Less, llvm::CodeGenOptSizeNone),
|
|
More => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeNone),
|
|
Aggressive => (llvm::CodeGenOptLevel::Aggressive, llvm::CodeGenOptSizeNone),
|
|
Size => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeDefault),
|
|
SizeMin => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeAggressive),
|
|
}
|
|
}
|
|
|
|
fn to_pass_builder_opt_level(cfg: config::OptLevel) -> llvm::PassBuilderOptLevel {
|
|
use config::OptLevel::*;
|
|
match cfg {
|
|
No => llvm::PassBuilderOptLevel::O0,
|
|
Less => llvm::PassBuilderOptLevel::O1,
|
|
More => llvm::PassBuilderOptLevel::O2,
|
|
Aggressive => llvm::PassBuilderOptLevel::O3,
|
|
Size => llvm::PassBuilderOptLevel::Os,
|
|
SizeMin => llvm::PassBuilderOptLevel::Oz,
|
|
}
|
|
}
|
|
|
|
fn to_llvm_relocation_model(relocation_model: RelocModel) -> llvm::RelocModel {
|
|
match relocation_model {
|
|
RelocModel::Static => llvm::RelocModel::Static,
|
|
// LLVM doesn't have a PIE relocation model, it represents PIE as PIC with an extra
|
|
// attribute.
|
|
RelocModel::Pic | RelocModel::Pie => llvm::RelocModel::PIC,
|
|
RelocModel::DynamicNoPic => llvm::RelocModel::DynamicNoPic,
|
|
RelocModel::Ropi => llvm::RelocModel::ROPI,
|
|
RelocModel::Rwpi => llvm::RelocModel::RWPI,
|
|
RelocModel::RopiRwpi => llvm::RelocModel::ROPI_RWPI,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn to_llvm_code_model(code_model: Option<CodeModel>) -> llvm::CodeModel {
|
|
match code_model {
|
|
Some(CodeModel::Tiny) => llvm::CodeModel::Tiny,
|
|
Some(CodeModel::Small) => llvm::CodeModel::Small,
|
|
Some(CodeModel::Kernel) => llvm::CodeModel::Kernel,
|
|
Some(CodeModel::Medium) => llvm::CodeModel::Medium,
|
|
Some(CodeModel::Large) => llvm::CodeModel::Large,
|
|
None => llvm::CodeModel::None,
|
|
}
|
|
}
|
|
|
|
fn to_llvm_float_abi(float_abi: Option<FloatAbi>) -> llvm::FloatAbi {
|
|
match float_abi {
|
|
None => llvm::FloatAbi::Default,
|
|
Some(FloatAbi::Soft) => llvm::FloatAbi::Soft,
|
|
Some(FloatAbi::Hard) => llvm::FloatAbi::Hard,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn target_machine_factory(
|
|
sess: &Session,
|
|
optlvl: config::OptLevel,
|
|
target_features: &[String],
|
|
) -> TargetMachineFactoryFn<LlvmCodegenBackend> {
|
|
let reloc_model = to_llvm_relocation_model(sess.relocation_model());
|
|
|
|
let (opt_level, _) = to_llvm_opt_settings(optlvl);
|
|
let float_abi = if sess.target.arch == "arm" && sess.opts.cg.soft_float {
|
|
llvm::FloatAbi::Soft
|
|
} else {
|
|
// `validate_commandline_args_with_session_available` has already warned about this being
|
|
// ignored. Let's make sure LLVM doesn't suddenly start using this flag on more targets.
|
|
to_llvm_float_abi(sess.target.llvm_floatabi)
|
|
};
|
|
|
|
let ffunction_sections =
|
|
sess.opts.unstable_opts.function_sections.unwrap_or(sess.target.function_sections);
|
|
let fdata_sections = ffunction_sections;
|
|
let funique_section_names = !sess.opts.unstable_opts.no_unique_section_names;
|
|
|
|
let code_model = to_llvm_code_model(sess.code_model());
|
|
|
|
let mut singlethread = sess.target.singlethread;
|
|
|
|
// On the wasm target once the `atomics` feature is enabled that means that
|
|
// we're no longer single-threaded, or otherwise we don't want LLVM to
|
|
// lower atomic operations to single-threaded operations.
|
|
if singlethread && sess.target.is_like_wasm && sess.target_features.contains(&sym::atomics) {
|
|
singlethread = false;
|
|
}
|
|
|
|
let triple = SmallCStr::new(&versioned_llvm_target(sess));
|
|
let cpu = SmallCStr::new(llvm_util::target_cpu(sess));
|
|
let features = CString::new(target_features.join(",")).unwrap();
|
|
let abi = SmallCStr::new(&sess.target.llvm_abiname);
|
|
let trap_unreachable =
|
|
sess.opts.unstable_opts.trap_unreachable.unwrap_or(sess.target.trap_unreachable);
|
|
let emit_stack_size_section = sess.opts.unstable_opts.emit_stack_sizes;
|
|
|
|
let verbose_asm = sess.opts.unstable_opts.verbose_asm;
|
|
let relax_elf_relocations =
|
|
sess.opts.unstable_opts.relax_elf_relocations.unwrap_or(sess.target.relax_elf_relocations);
|
|
|
|
let use_init_array =
|
|
!sess.opts.unstable_opts.use_ctors_section.unwrap_or(sess.target.use_ctors_section);
|
|
|
|
let path_mapping = sess.source_map().path_mapping().clone();
|
|
|
|
let use_emulated_tls = matches!(sess.tls_model(), TlsModel::Emulated);
|
|
|
|
// copy the exe path, followed by path all into one buffer
|
|
// null terminating them so we can use them as null terminated strings
|
|
let args_cstr_buff = {
|
|
let mut args_cstr_buff: Vec<u8> = Vec::new();
|
|
let exe_path = std::env::current_exe().unwrap_or_default();
|
|
let exe_path_str = exe_path.into_os_string().into_string().unwrap_or_default();
|
|
|
|
args_cstr_buff.extend_from_slice(exe_path_str.as_bytes());
|
|
args_cstr_buff.push(0);
|
|
|
|
for arg in sess.expanded_args.iter() {
|
|
args_cstr_buff.extend_from_slice(arg.as_bytes());
|
|
args_cstr_buff.push(0);
|
|
}
|
|
|
|
args_cstr_buff
|
|
};
|
|
|
|
let debuginfo_compression = sess.opts.debuginfo_compression.to_string();
|
|
match sess.opts.debuginfo_compression {
|
|
rustc_session::config::DebugInfoCompression::Zlib => {
|
|
if !unsafe { LLVMRustLLVMHasZlibCompressionForDebugSymbols() } {
|
|
sess.dcx().emit_warn(UnknownCompression { algorithm: "zlib" });
|
|
}
|
|
}
|
|
rustc_session::config::DebugInfoCompression::Zstd => {
|
|
if !unsafe { LLVMRustLLVMHasZstdCompressionForDebugSymbols() } {
|
|
sess.dcx().emit_warn(UnknownCompression { algorithm: "zstd" });
|
|
}
|
|
}
|
|
rustc_session::config::DebugInfoCompression::None => {}
|
|
};
|
|
let debuginfo_compression = SmallCStr::new(&debuginfo_compression);
|
|
|
|
let file_name_display_preference =
|
|
sess.filename_display_preference(RemapPathScopeComponents::DEBUGINFO);
|
|
|
|
let use_wasm_eh = wants_wasm_eh(sess);
|
|
|
|
Arc::new(move |config: TargetMachineFactoryConfig| {
|
|
let path_to_cstring_helper = |path: Option<PathBuf>| -> CString {
|
|
let path = path.unwrap_or_default();
|
|
let path = path_mapping
|
|
.to_real_filename(path)
|
|
.to_string_lossy(file_name_display_preference)
|
|
.into_owned();
|
|
CString::new(path).unwrap()
|
|
};
|
|
|
|
let split_dwarf_file = path_to_cstring_helper(config.split_dwarf_file);
|
|
let output_obj_file = path_to_cstring_helper(config.output_obj_file);
|
|
|
|
OwnedTargetMachine::new(
|
|
&triple,
|
|
&cpu,
|
|
&features,
|
|
&abi,
|
|
code_model,
|
|
reloc_model,
|
|
opt_level,
|
|
float_abi,
|
|
ffunction_sections,
|
|
fdata_sections,
|
|
funique_section_names,
|
|
trap_unreachable,
|
|
singlethread,
|
|
verbose_asm,
|
|
emit_stack_size_section,
|
|
relax_elf_relocations,
|
|
use_init_array,
|
|
&split_dwarf_file,
|
|
&output_obj_file,
|
|
&debuginfo_compression,
|
|
use_emulated_tls,
|
|
&args_cstr_buff,
|
|
use_wasm_eh,
|
|
)
|
|
})
|
|
}
|
|
|
|
pub(crate) fn save_temp_bitcode(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
name: &str,
|
|
) {
|
|
if !cgcx.save_temps {
|
|
return;
|
|
}
|
|
let ext = format!("{name}.bc");
|
|
let path = cgcx.output_filenames.temp_path_ext_for_cgu(
|
|
&ext,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
write_bitcode_to_file(module, &path)
|
|
}
|
|
|
|
fn write_bitcode_to_file(module: &ModuleCodegen<ModuleLlvm>, path: &Path) {
|
|
unsafe {
|
|
let path = path_to_c_string(&path);
|
|
let llmod = module.module_llvm.llmod();
|
|
llvm::LLVMWriteBitcodeToFile(llmod, path.as_ptr());
|
|
}
|
|
}
|
|
|
|
/// In what context is a dignostic handler being attached to a codegen unit?
|
|
pub(crate) enum CodegenDiagnosticsStage {
|
|
/// Prelink optimization stage.
|
|
Opt,
|
|
/// LTO/ThinLTO postlink optimization stage.
|
|
LTO,
|
|
/// Code generation.
|
|
Codegen,
|
|
}
|
|
|
|
pub(crate) struct DiagnosticHandlers<'a> {
|
|
data: *mut (&'a CodegenContext<LlvmCodegenBackend>, DiagCtxtHandle<'a>),
|
|
llcx: &'a llvm::Context,
|
|
old_handler: Option<&'a llvm::DiagnosticHandler>,
|
|
}
|
|
|
|
impl<'a> DiagnosticHandlers<'a> {
|
|
pub(crate) fn new(
|
|
cgcx: &'a CodegenContext<LlvmCodegenBackend>,
|
|
dcx: DiagCtxtHandle<'a>,
|
|
llcx: &'a llvm::Context,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
stage: CodegenDiagnosticsStage,
|
|
) -> Self {
|
|
let remark_passes_all: bool;
|
|
let remark_passes: Vec<CString>;
|
|
match &cgcx.remark {
|
|
Passes::All => {
|
|
remark_passes_all = true;
|
|
remark_passes = Vec::new();
|
|
}
|
|
Passes::Some(passes) => {
|
|
remark_passes_all = false;
|
|
remark_passes =
|
|
passes.iter().map(|name| CString::new(name.as_str()).unwrap()).collect();
|
|
}
|
|
};
|
|
let remark_passes: Vec<*const c_char> =
|
|
remark_passes.iter().map(|name: &CString| name.as_ptr()).collect();
|
|
let remark_file = cgcx
|
|
.remark_dir
|
|
.as_ref()
|
|
// Use the .opt.yaml file suffix, which is supported by LLVM's opt-viewer.
|
|
.map(|dir| {
|
|
let stage_suffix = match stage {
|
|
CodegenDiagnosticsStage::Codegen => "codegen",
|
|
CodegenDiagnosticsStage::Opt => "opt",
|
|
CodegenDiagnosticsStage::LTO => "lto",
|
|
};
|
|
dir.join(format!("{}.{stage_suffix}.opt.yaml", module.name))
|
|
})
|
|
.and_then(|dir| dir.to_str().and_then(|p| CString::new(p).ok()));
|
|
|
|
let pgo_available = cgcx.opts.cg.profile_use.is_some();
|
|
let data = Box::into_raw(Box::new((cgcx, dcx)));
|
|
unsafe {
|
|
let old_handler = llvm::LLVMRustContextGetDiagnosticHandler(llcx);
|
|
llvm::LLVMRustContextConfigureDiagnosticHandler(
|
|
llcx,
|
|
diagnostic_handler,
|
|
data.cast(),
|
|
remark_passes_all,
|
|
remark_passes.as_ptr(),
|
|
remark_passes.len(),
|
|
// The `as_ref()` is important here, otherwise the `CString` will be dropped
|
|
// too soon!
|
|
remark_file.as_ref().map(|dir| dir.as_ptr()).unwrap_or(std::ptr::null()),
|
|
pgo_available,
|
|
);
|
|
DiagnosticHandlers { data, llcx, old_handler }
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Drop for DiagnosticHandlers<'a> {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMRustContextSetDiagnosticHandler(self.llcx, self.old_handler);
|
|
drop(Box::from_raw(self.data));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn report_inline_asm(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
msg: String,
|
|
level: llvm::DiagnosticLevel,
|
|
cookie: u64,
|
|
source: Option<(String, Vec<InnerSpan>)>,
|
|
) {
|
|
// In LTO build we may get srcloc values from other crates which are invalid
|
|
// since they use a different source map. To be safe we just suppress these
|
|
// in LTO builds.
|
|
let span = if cookie == 0 || matches!(cgcx.lto, Lto::Fat | Lto::Thin) {
|
|
SpanData::default()
|
|
} else {
|
|
SpanData {
|
|
lo: BytePos::from_u32(cookie as u32),
|
|
hi: BytePos::from_u32((cookie >> 32) as u32),
|
|
ctxt: SyntaxContext::root(),
|
|
parent: None,
|
|
}
|
|
};
|
|
let level = match level {
|
|
llvm::DiagnosticLevel::Error => Level::Error,
|
|
llvm::DiagnosticLevel::Warning => Level::Warning,
|
|
llvm::DiagnosticLevel::Note | llvm::DiagnosticLevel::Remark => Level::Note,
|
|
};
|
|
let msg = msg.strip_prefix("error: ").unwrap_or(&msg).to_string();
|
|
cgcx.diag_emitter.inline_asm_error(span, msg, level, source);
|
|
}
|
|
|
|
unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) {
|
|
if user.is_null() {
|
|
return;
|
|
}
|
|
let (cgcx, dcx) =
|
|
unsafe { *(user as *const (&CodegenContext<LlvmCodegenBackend>, DiagCtxtHandle<'_>)) };
|
|
|
|
match unsafe { llvm::diagnostic::Diagnostic::unpack(info) } {
|
|
llvm::diagnostic::InlineAsm(inline) => {
|
|
report_inline_asm(cgcx, inline.message, inline.level, inline.cookie, inline.source);
|
|
}
|
|
|
|
llvm::diagnostic::Optimization(opt) => {
|
|
dcx.emit_note(FromLlvmOptimizationDiag {
|
|
filename: &opt.filename,
|
|
line: opt.line,
|
|
column: opt.column,
|
|
pass_name: &opt.pass_name,
|
|
kind: match opt.kind {
|
|
OptimizationRemark => "success",
|
|
OptimizationMissed | OptimizationFailure => "missed",
|
|
OptimizationAnalysis
|
|
| OptimizationAnalysisFPCommute
|
|
| OptimizationAnalysisAliasing => "analysis",
|
|
OptimizationRemarkOther => "other",
|
|
},
|
|
message: &opt.message,
|
|
});
|
|
}
|
|
llvm::diagnostic::PGO(diagnostic_ref) | llvm::diagnostic::Linker(diagnostic_ref) => {
|
|
let message = llvm::build_string(|s| unsafe {
|
|
llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
|
|
})
|
|
.expect("non-UTF8 diagnostic");
|
|
dcx.emit_warn(FromLlvmDiag { message });
|
|
}
|
|
llvm::diagnostic::Unsupported(diagnostic_ref) => {
|
|
let message = llvm::build_string(|s| unsafe {
|
|
llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
|
|
})
|
|
.expect("non-UTF8 diagnostic");
|
|
dcx.emit_err(FromLlvmDiag { message });
|
|
}
|
|
llvm::diagnostic::UnknownDiagnostic(..) => {}
|
|
}
|
|
}
|
|
|
|
fn get_pgo_gen_path(config: &ModuleConfig) -> Option<CString> {
|
|
match config.pgo_gen {
|
|
SwitchWithOptPath::Enabled(ref opt_dir_path) => {
|
|
let path = if let Some(dir_path) = opt_dir_path {
|
|
dir_path.join("default_%m.profraw")
|
|
} else {
|
|
PathBuf::from("default_%m.profraw")
|
|
};
|
|
|
|
Some(CString::new(format!("{}", path.display())).unwrap())
|
|
}
|
|
SwitchWithOptPath::Disabled => None,
|
|
}
|
|
}
|
|
|
|
fn get_pgo_use_path(config: &ModuleConfig) -> Option<CString> {
|
|
config
|
|
.pgo_use
|
|
.as_ref()
|
|
.map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
|
|
}
|
|
|
|
fn get_pgo_sample_use_path(config: &ModuleConfig) -> Option<CString> {
|
|
config
|
|
.pgo_sample_use
|
|
.as_ref()
|
|
.map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
|
|
}
|
|
|
|
fn get_instr_profile_output_path(config: &ModuleConfig) -> Option<CString> {
|
|
config.instrument_coverage.then(|| c"default_%m_%p.profraw".to_owned())
|
|
}
|
|
|
|
// PreAD will run llvm opts but disable size increasing opts (vectorization, loop unrolling)
|
|
// DuringAD is the same as above, but also runs the enzyme opt and autodiff passes.
|
|
// PostAD will run all opts, including size increasing opts.
|
|
#[derive(Debug, Eq, PartialEq)]
|
|
pub(crate) enum AutodiffStage {
|
|
PreAD,
|
|
DuringAD,
|
|
PostAD,
|
|
}
|
|
|
|
pub(crate) unsafe fn llvm_optimize(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
dcx: DiagCtxtHandle<'_>,
|
|
module: &ModuleCodegen<ModuleLlvm>,
|
|
thin_lto_buffer: Option<&mut *mut llvm::ThinLTOBuffer>,
|
|
config: &ModuleConfig,
|
|
opt_level: config::OptLevel,
|
|
opt_stage: llvm::OptStage,
|
|
autodiff_stage: AutodiffStage,
|
|
) {
|
|
// Enzyme:
|
|
// The whole point of compiler based AD is to differentiate optimized IR instead of unoptimized
|
|
// source code. However, benchmarks show that optimizations increasing the code size
|
|
// tend to reduce AD performance. Therefore deactivate them before AD, then differentiate the code
|
|
// and finally re-optimize the module, now with all optimizations available.
|
|
// FIXME(ZuseZ4): In a future update we could figure out how to only optimize individual functions getting
|
|
// differentiated.
|
|
|
|
let consider_ad = cfg!(llvm_enzyme) && config.autodiff.contains(&config::AutoDiff::Enable);
|
|
let run_enzyme = autodiff_stage == AutodiffStage::DuringAD;
|
|
let print_before_enzyme = config.autodiff.contains(&config::AutoDiff::PrintModBefore);
|
|
let print_after_enzyme = config.autodiff.contains(&config::AutoDiff::PrintModAfter);
|
|
let print_passes = config.autodiff.contains(&config::AutoDiff::PrintPasses);
|
|
let merge_functions;
|
|
let unroll_loops;
|
|
let vectorize_slp;
|
|
let vectorize_loop;
|
|
|
|
// When we build rustc with enzyme/autodiff support, we want to postpone size-increasing
|
|
// optimizations until after differentiation. Our pipeline is thus: (opt + enzyme), (full opt).
|
|
// We therefore have two calls to llvm_optimize, if autodiff is used.
|
|
//
|
|
// We also must disable merge_functions, since autodiff placeholder/dummy bodies tend to be
|
|
// identical. We run opts before AD, so there is a chance that LLVM will merge our dummies.
|
|
// In that case, we lack some dummy bodies and can't replace them with the real AD code anymore.
|
|
// We then would need to abort compilation. This was especially common in test cases.
|
|
if consider_ad && autodiff_stage != AutodiffStage::PostAD {
|
|
merge_functions = false;
|
|
unroll_loops = false;
|
|
vectorize_slp = false;
|
|
vectorize_loop = false;
|
|
} else {
|
|
unroll_loops =
|
|
opt_level != config::OptLevel::Size && opt_level != config::OptLevel::SizeMin;
|
|
merge_functions = config.merge_functions;
|
|
vectorize_slp = config.vectorize_slp;
|
|
vectorize_loop = config.vectorize_loop;
|
|
}
|
|
trace!(?unroll_loops, ?vectorize_slp, ?vectorize_loop, ?run_enzyme);
|
|
if thin_lto_buffer.is_some() {
|
|
assert!(
|
|
matches!(
|
|
opt_stage,
|
|
llvm::OptStage::PreLinkNoLTO
|
|
| llvm::OptStage::PreLinkFatLTO
|
|
| llvm::OptStage::PreLinkThinLTO
|
|
),
|
|
"the bitcode for LTO can only be obtained at the pre-link stage"
|
|
);
|
|
}
|
|
let pgo_gen_path = get_pgo_gen_path(config);
|
|
let pgo_use_path = get_pgo_use_path(config);
|
|
let pgo_sample_use_path = get_pgo_sample_use_path(config);
|
|
let is_lto = opt_stage == llvm::OptStage::ThinLTO || opt_stage == llvm::OptStage::FatLTO;
|
|
let instr_profile_output_path = get_instr_profile_output_path(config);
|
|
let sanitize_dataflow_abilist: Vec<_> = config
|
|
.sanitizer_dataflow_abilist
|
|
.iter()
|
|
.map(|file| CString::new(file.as_str()).unwrap())
|
|
.collect();
|
|
let sanitize_dataflow_abilist_ptrs: Vec<_> =
|
|
sanitize_dataflow_abilist.iter().map(|file| file.as_ptr()).collect();
|
|
// Sanitizer instrumentation is only inserted during the pre-link optimization stage.
|
|
let sanitizer_options = if !is_lto {
|
|
Some(llvm::SanitizerOptions {
|
|
sanitize_address: config.sanitizer.contains(SanitizerSet::ADDRESS),
|
|
sanitize_address_recover: config.sanitizer_recover.contains(SanitizerSet::ADDRESS),
|
|
sanitize_cfi: config.sanitizer.contains(SanitizerSet::CFI),
|
|
sanitize_dataflow: config.sanitizer.contains(SanitizerSet::DATAFLOW),
|
|
sanitize_dataflow_abilist: sanitize_dataflow_abilist_ptrs.as_ptr(),
|
|
sanitize_dataflow_abilist_len: sanitize_dataflow_abilist_ptrs.len(),
|
|
sanitize_kcfi: config.sanitizer.contains(SanitizerSet::KCFI),
|
|
sanitize_memory: config.sanitizer.contains(SanitizerSet::MEMORY),
|
|
sanitize_memory_recover: config.sanitizer_recover.contains(SanitizerSet::MEMORY),
|
|
sanitize_memory_track_origins: config.sanitizer_memory_track_origins as c_int,
|
|
sanitize_thread: config.sanitizer.contains(SanitizerSet::THREAD),
|
|
sanitize_hwaddress: config.sanitizer.contains(SanitizerSet::HWADDRESS),
|
|
sanitize_hwaddress_recover: config.sanitizer_recover.contains(SanitizerSet::HWADDRESS),
|
|
sanitize_kernel_address: config.sanitizer.contains(SanitizerSet::KERNELADDRESS),
|
|
sanitize_kernel_address_recover: config
|
|
.sanitizer_recover
|
|
.contains(SanitizerSet::KERNELADDRESS),
|
|
})
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let mut llvm_profiler = cgcx
|
|
.prof
|
|
.llvm_recording_enabled()
|
|
.then(|| LlvmSelfProfiler::new(cgcx.prof.get_self_profiler().unwrap()));
|
|
|
|
let llvm_selfprofiler =
|
|
llvm_profiler.as_mut().map(|s| s as *mut _ as *mut c_void).unwrap_or(std::ptr::null_mut());
|
|
|
|
let extra_passes = if !is_lto { config.passes.join(",") } else { "".to_string() };
|
|
|
|
let llvm_plugins = config.llvm_plugins.join(",");
|
|
|
|
let result = unsafe {
|
|
llvm::LLVMRustOptimize(
|
|
module.module_llvm.llmod(),
|
|
&*module.module_llvm.tm.raw(),
|
|
to_pass_builder_opt_level(opt_level),
|
|
opt_stage,
|
|
cgcx.opts.cg.linker_plugin_lto.enabled(),
|
|
config.no_prepopulate_passes,
|
|
config.verify_llvm_ir,
|
|
config.lint_llvm_ir,
|
|
thin_lto_buffer,
|
|
config.emit_thin_lto,
|
|
config.emit_thin_lto_summary,
|
|
merge_functions,
|
|
unroll_loops,
|
|
vectorize_slp,
|
|
vectorize_loop,
|
|
config.no_builtins,
|
|
config.emit_lifetime_markers,
|
|
run_enzyme,
|
|
print_before_enzyme,
|
|
print_after_enzyme,
|
|
print_passes,
|
|
sanitizer_options.as_ref(),
|
|
pgo_gen_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
pgo_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
config.instrument_coverage,
|
|
instr_profile_output_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
pgo_sample_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
|
|
config.debug_info_for_profiling,
|
|
llvm_selfprofiler,
|
|
selfprofile_before_pass_callback,
|
|
selfprofile_after_pass_callback,
|
|
extra_passes.as_c_char_ptr(),
|
|
extra_passes.len(),
|
|
llvm_plugins.as_c_char_ptr(),
|
|
llvm_plugins.len(),
|
|
)
|
|
};
|
|
result.into_result().unwrap_or_else(|()| llvm_err(dcx, LlvmError::RunLlvmPasses))
|
|
}
|
|
|
|
// Unsafe due to LLVM calls.
|
|
pub(crate) fn optimize(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
dcx: DiagCtxtHandle<'_>,
|
|
module: &mut ModuleCodegen<ModuleLlvm>,
|
|
config: &ModuleConfig,
|
|
) {
|
|
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_optimize", &*module.name);
|
|
|
|
let llcx = &*module.module_llvm.llcx;
|
|
let _handlers = DiagnosticHandlers::new(cgcx, dcx, llcx, module, CodegenDiagnosticsStage::Opt);
|
|
|
|
if config.emit_no_opt_bc {
|
|
let out = cgcx.output_filenames.temp_path_ext_for_cgu(
|
|
"no-opt.bc",
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
write_bitcode_to_file(module, &out)
|
|
}
|
|
|
|
// FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
|
|
|
|
if let Some(opt_level) = config.opt_level {
|
|
let opt_stage = match cgcx.lto {
|
|
Lto::Fat => llvm::OptStage::PreLinkFatLTO,
|
|
Lto::Thin | Lto::ThinLocal => llvm::OptStage::PreLinkThinLTO,
|
|
_ if cgcx.opts.cg.linker_plugin_lto.enabled() => llvm::OptStage::PreLinkThinLTO,
|
|
_ => llvm::OptStage::PreLinkNoLTO,
|
|
};
|
|
|
|
// If we know that we will later run AD, then we disable vectorization and loop unrolling.
|
|
// Otherwise we pretend AD is already done and run the normal opt pipeline (=PostAD).
|
|
let consider_ad = cfg!(llvm_enzyme) && config.autodiff.contains(&config::AutoDiff::Enable);
|
|
let autodiff_stage = if consider_ad { AutodiffStage::PreAD } else { AutodiffStage::PostAD };
|
|
// The embedded bitcode is used to run LTO/ThinLTO.
|
|
// The bitcode obtained during the `codegen` phase is no longer suitable for performing LTO.
|
|
// It may have undergone LTO due to ThinLocal, so we need to obtain the embedded bitcode at
|
|
// this point.
|
|
let mut thin_lto_buffer = if (module.kind == ModuleKind::Regular
|
|
&& config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full))
|
|
|| config.emit_thin_lto_summary
|
|
{
|
|
Some(null_mut())
|
|
} else {
|
|
None
|
|
};
|
|
unsafe {
|
|
llvm_optimize(
|
|
cgcx,
|
|
dcx,
|
|
module,
|
|
thin_lto_buffer.as_mut(),
|
|
config,
|
|
opt_level,
|
|
opt_stage,
|
|
autodiff_stage,
|
|
)
|
|
};
|
|
if let Some(thin_lto_buffer) = thin_lto_buffer {
|
|
let thin_lto_buffer = unsafe { ThinBuffer::from_raw_ptr(thin_lto_buffer) };
|
|
module.thin_lto_buffer = Some(thin_lto_buffer.data().to_vec());
|
|
let bc_summary_out = cgcx.output_filenames.temp_path_for_cgu(
|
|
OutputType::ThinLinkBitcode,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
if config.emit_thin_lto_summary
|
|
&& let Some(thin_link_bitcode_filename) = bc_summary_out.file_name()
|
|
{
|
|
let summary_data = thin_lto_buffer.thin_link_data();
|
|
cgcx.prof.artifact_size(
|
|
"llvm_bitcode_summary",
|
|
thin_link_bitcode_filename.to_string_lossy(),
|
|
summary_data.len() as u64,
|
|
);
|
|
let _timer = cgcx.prof.generic_activity_with_arg(
|
|
"LLVM_module_codegen_emit_bitcode_summary",
|
|
&*module.name,
|
|
);
|
|
if let Err(err) = fs::write(&bc_summary_out, summary_data) {
|
|
dcx.emit_err(WriteBytecode { path: &bc_summary_out, err });
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn codegen(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
module: ModuleCodegen<ModuleLlvm>,
|
|
config: &ModuleConfig,
|
|
) -> CompiledModule {
|
|
let dcx = cgcx.create_dcx();
|
|
let dcx = dcx.handle();
|
|
|
|
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &*module.name);
|
|
{
|
|
let llmod = module.module_llvm.llmod();
|
|
let llcx = &*module.module_llvm.llcx;
|
|
let tm = &*module.module_llvm.tm;
|
|
let _handlers =
|
|
DiagnosticHandlers::new(cgcx, dcx, llcx, &module, CodegenDiagnosticsStage::Codegen);
|
|
|
|
if cgcx.msvc_imps_needed {
|
|
create_msvc_imps(cgcx, llcx, llmod);
|
|
}
|
|
|
|
// Note that if object files are just LLVM bitcode we write bitcode,
|
|
// copy it to the .o file, and delete the bitcode if it wasn't
|
|
// otherwise requested.
|
|
|
|
let bc_out = cgcx.output_filenames.temp_path_for_cgu(
|
|
OutputType::Bitcode,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
let obj_out = cgcx.output_filenames.temp_path_for_cgu(
|
|
OutputType::Object,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
|
|
if config.bitcode_needed() {
|
|
if config.emit_bc || config.emit_obj == EmitObj::Bitcode {
|
|
let thin = {
|
|
let _timer = cgcx.prof.generic_activity_with_arg(
|
|
"LLVM_module_codegen_make_bitcode",
|
|
&*module.name,
|
|
);
|
|
ThinBuffer::new(llmod, config.emit_thin_lto)
|
|
};
|
|
let data = thin.data();
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_emit_bitcode", &*module.name);
|
|
if let Some(bitcode_filename) = bc_out.file_name() {
|
|
cgcx.prof.artifact_size(
|
|
"llvm_bitcode",
|
|
bitcode_filename.to_string_lossy(),
|
|
data.len() as u64,
|
|
);
|
|
}
|
|
if let Err(err) = fs::write(&bc_out, data) {
|
|
dcx.emit_err(WriteBytecode { path: &bc_out, err });
|
|
}
|
|
}
|
|
|
|
if config.embed_bitcode() && module.kind == ModuleKind::Regular {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_embed_bitcode", &*module.name);
|
|
let thin_bc =
|
|
module.thin_lto_buffer.as_deref().expect("cannot find embedded bitcode");
|
|
embed_bitcode(cgcx, llcx, llmod, &thin_bc);
|
|
}
|
|
}
|
|
|
|
if config.emit_ir {
|
|
let _timer =
|
|
cgcx.prof.generic_activity_with_arg("LLVM_module_codegen_emit_ir", &*module.name);
|
|
let out = cgcx.output_filenames.temp_path_for_cgu(
|
|
OutputType::LlvmAssembly,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
let out_c = path_to_c_string(&out);
|
|
|
|
extern "C" fn demangle_callback(
|
|
input_ptr: *const c_char,
|
|
input_len: size_t,
|
|
output_ptr: *mut c_char,
|
|
output_len: size_t,
|
|
) -> size_t {
|
|
let input =
|
|
unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) };
|
|
|
|
let Ok(input) = str::from_utf8(input) else { return 0 };
|
|
|
|
let output = unsafe {
|
|
slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
|
|
};
|
|
let mut cursor = io::Cursor::new(output);
|
|
|
|
let Ok(demangled) = rustc_demangle::try_demangle(input) else { return 0 };
|
|
|
|
if write!(cursor, "{demangled:#}").is_err() {
|
|
// Possible only if provided buffer is not big enough
|
|
return 0;
|
|
}
|
|
|
|
cursor.position() as size_t
|
|
}
|
|
|
|
let result =
|
|
unsafe { llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback) };
|
|
|
|
if result == llvm::LLVMRustResult::Success {
|
|
record_artifact_size(&cgcx.prof, "llvm_ir", &out);
|
|
}
|
|
|
|
result
|
|
.into_result()
|
|
.unwrap_or_else(|()| llvm_err(dcx, LlvmError::WriteIr { path: &out }));
|
|
}
|
|
|
|
if config.emit_asm {
|
|
let _timer =
|
|
cgcx.prof.generic_activity_with_arg("LLVM_module_codegen_emit_asm", &*module.name);
|
|
let path = cgcx.output_filenames.temp_path_for_cgu(
|
|
OutputType::Assembly,
|
|
&module.name,
|
|
cgcx.invocation_temp.as_deref(),
|
|
);
|
|
|
|
// We can't use the same module for asm and object code output,
|
|
// because that triggers various errors like invalid IR or broken
|
|
// binaries. So we must clone the module to produce the asm output
|
|
// if we are also producing object code.
|
|
let llmod = if let EmitObj::ObjectCode(_) = config.emit_obj {
|
|
llvm::LLVMCloneModule(llmod)
|
|
} else {
|
|
llmod
|
|
};
|
|
write_output_file(
|
|
dcx,
|
|
tm.raw(),
|
|
config.no_builtins,
|
|
llmod,
|
|
&path,
|
|
None,
|
|
llvm::FileType::AssemblyFile,
|
|
&cgcx.prof,
|
|
config.verify_llvm_ir,
|
|
);
|
|
}
|
|
|
|
match config.emit_obj {
|
|
EmitObj::ObjectCode(_) => {
|
|
let _timer = cgcx
|
|
.prof
|
|
.generic_activity_with_arg("LLVM_module_codegen_emit_obj", &*module.name);
|
|
|
|
let dwo_out = cgcx
|
|
.output_filenames
|
|
.temp_path_dwo_for_cgu(&module.name, cgcx.invocation_temp.as_deref());
|
|
let dwo_out = match (cgcx.split_debuginfo, cgcx.split_dwarf_kind) {
|
|
// Don't change how DWARF is emitted when disabled.
|
|
(SplitDebuginfo::Off, _) => None,
|
|
// Don't provide a DWARF object path if split debuginfo is enabled but this is
|
|
// a platform that doesn't support Split DWARF.
|
|
_ if !cgcx.target_can_use_split_dwarf => None,
|
|
// Don't provide a DWARF object path in single mode, sections will be written
|
|
// into the object as normal but ignored by linker.
|
|
(_, SplitDwarfKind::Single) => None,
|
|
// Emit (a subset of the) DWARF into a separate dwarf object file in split
|
|
// mode.
|
|
(_, SplitDwarfKind::Split) => Some(dwo_out.as_path()),
|
|
};
|
|
|
|
write_output_file(
|
|
dcx,
|
|
tm.raw(),
|
|
config.no_builtins,
|
|
llmod,
|
|
&obj_out,
|
|
dwo_out,
|
|
llvm::FileType::ObjectFile,
|
|
&cgcx.prof,
|
|
config.verify_llvm_ir,
|
|
);
|
|
}
|
|
|
|
EmitObj::Bitcode => {
|
|
debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
|
|
if let Err(err) = link_or_copy(&bc_out, &obj_out) {
|
|
dcx.emit_err(CopyBitcode { err });
|
|
}
|
|
|
|
if !config.emit_bc {
|
|
debug!("removing_bitcode {:?}", bc_out);
|
|
ensure_removed(dcx, &bc_out);
|
|
}
|
|
}
|
|
|
|
EmitObj::None => {}
|
|
}
|
|
|
|
record_llvm_cgu_instructions_stats(&cgcx.prof, llmod);
|
|
}
|
|
|
|
// `.dwo` files are only emitted if:
|
|
//
|
|
// - Object files are being emitted (i.e. bitcode only or metadata only compilations will not
|
|
// produce dwarf objects, even if otherwise enabled)
|
|
// - Target supports Split DWARF
|
|
// - Split debuginfo is enabled
|
|
// - Split DWARF kind is `split` (i.e. debuginfo is split into `.dwo` files, not different
|
|
// sections in the `.o` files).
|
|
let dwarf_object_emitted = matches!(config.emit_obj, EmitObj::ObjectCode(_))
|
|
&& cgcx.target_can_use_split_dwarf
|
|
&& cgcx.split_debuginfo != SplitDebuginfo::Off
|
|
&& cgcx.split_dwarf_kind == SplitDwarfKind::Split;
|
|
module.into_compiled_module(
|
|
config.emit_obj != EmitObj::None,
|
|
dwarf_object_emitted,
|
|
config.emit_bc,
|
|
config.emit_asm,
|
|
config.emit_ir,
|
|
&cgcx.output_filenames,
|
|
cgcx.invocation_temp.as_deref(),
|
|
)
|
|
}
|
|
|
|
fn create_section_with_flags_asm(section_name: &str, section_flags: &str, data: &[u8]) -> Vec<u8> {
|
|
let mut asm = format!(".section {section_name},\"{section_flags}\"\n").into_bytes();
|
|
asm.extend_from_slice(b".ascii \"");
|
|
asm.reserve(data.len());
|
|
for &byte in data {
|
|
if byte == b'\\' || byte == b'"' {
|
|
asm.push(b'\\');
|
|
asm.push(byte);
|
|
} else if byte < 0x20 || byte >= 0x80 {
|
|
// Avoid non UTF-8 inline assembly. Use octal escape sequence, because it is fixed
|
|
// width, while hex escapes will consume following characters.
|
|
asm.push(b'\\');
|
|
asm.push(b'0' + ((byte >> 6) & 0x7));
|
|
asm.push(b'0' + ((byte >> 3) & 0x7));
|
|
asm.push(b'0' + ((byte >> 0) & 0x7));
|
|
} else {
|
|
asm.push(byte);
|
|
}
|
|
}
|
|
asm.extend_from_slice(b"\"\n");
|
|
asm
|
|
}
|
|
|
|
pub(crate) fn bitcode_section_name(cgcx: &CodegenContext<LlvmCodegenBackend>) -> &'static CStr {
|
|
if cgcx.target_is_like_darwin {
|
|
c"__LLVM,__bitcode"
|
|
} else if cgcx.target_is_like_aix {
|
|
c".ipa"
|
|
} else {
|
|
c".llvmbc"
|
|
}
|
|
}
|
|
|
|
/// Embed the bitcode of an LLVM module for LTO in the LLVM module itself.
|
|
fn embed_bitcode(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
llcx: &llvm::Context,
|
|
llmod: &llvm::Module,
|
|
bitcode: &[u8],
|
|
) {
|
|
// We're adding custom sections to the output object file, but we definitely
|
|
// do not want these custom sections to make their way into the final linked
|
|
// executable. The purpose of these custom sections is for tooling
|
|
// surrounding object files to work with the LLVM IR, if necessary. For
|
|
// example rustc's own LTO will look for LLVM IR inside of the object file
|
|
// in these sections by default.
|
|
//
|
|
// To handle this is a bit different depending on the object file format
|
|
// used by the backend, broken down into a few different categories:
|
|
//
|
|
// * Mach-O - this is for macOS. Inspecting the source code for the native
|
|
// linker here shows that the `.llvmbc` and `.llvmcmd` sections are
|
|
// automatically skipped by the linker. In that case there's nothing extra
|
|
// that we need to do here. We do need to make sure that the
|
|
// `__LLVM,__cmdline` section exists even though it is empty as otherwise
|
|
// ld64 rejects the object file.
|
|
//
|
|
// * Wasm - the native LLD linker is hard-coded to skip `.llvmbc` and
|
|
// `.llvmcmd` sections, so there's nothing extra we need to do.
|
|
//
|
|
// * COFF - if we don't do anything the linker will by default copy all
|
|
// these sections to the output artifact, not what we want! To subvert
|
|
// this we want to flag the sections we inserted here as
|
|
// `IMAGE_SCN_LNK_REMOVE`.
|
|
//
|
|
// * ELF - this is very similar to COFF above. One difference is that these
|
|
// sections are removed from the output linked artifact when
|
|
// `--gc-sections` is passed, which we pass by default. If that flag isn't
|
|
// passed though then these sections will show up in the final output.
|
|
// Additionally the flag that we need to set here is `SHF_EXCLUDE`.
|
|
//
|
|
// * XCOFF - AIX linker ignores content in .ipa and .info if no auxiliary
|
|
// symbol associated with these sections.
|
|
//
|
|
// Unfortunately, LLVM provides no way to set custom section flags. For ELF
|
|
// and COFF we emit the sections using module level inline assembly for that
|
|
// reason (see issue #90326 for historical background).
|
|
|
|
if cgcx.target_is_like_darwin
|
|
|| cgcx.target_is_like_aix
|
|
|| cgcx.target_arch == "wasm32"
|
|
|| cgcx.target_arch == "wasm64"
|
|
{
|
|
// We don't need custom section flags, create LLVM globals.
|
|
let llconst = common::bytes_in_context(llcx, bitcode);
|
|
let llglobal = llvm::add_global(llmod, common::val_ty(llconst), c"rustc.embedded.module");
|
|
llvm::set_initializer(llglobal, llconst);
|
|
|
|
llvm::set_section(llglobal, bitcode_section_name(cgcx));
|
|
llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
llvm::LLVMSetGlobalConstant(llglobal, llvm::TRUE);
|
|
|
|
let llconst = common::bytes_in_context(llcx, &[]);
|
|
let llglobal = llvm::add_global(llmod, common::val_ty(llconst), c"rustc.embedded.cmdline");
|
|
llvm::set_initializer(llglobal, llconst);
|
|
let section = if cgcx.target_is_like_darwin {
|
|
c"__LLVM,__cmdline"
|
|
} else if cgcx.target_is_like_aix {
|
|
c".info"
|
|
} else {
|
|
c".llvmcmd"
|
|
};
|
|
llvm::set_section(llglobal, section);
|
|
llvm::set_linkage(llglobal, llvm::Linkage::PrivateLinkage);
|
|
} else {
|
|
// We need custom section flags, so emit module-level inline assembly.
|
|
let section_flags = if cgcx.is_pe_coff { "n" } else { "e" };
|
|
let asm = create_section_with_flags_asm(".llvmbc", section_flags, bitcode);
|
|
llvm::append_module_inline_asm(llmod, &asm);
|
|
let asm = create_section_with_flags_asm(".llvmcmd", section_flags, &[]);
|
|
llvm::append_module_inline_asm(llmod, &asm);
|
|
}
|
|
}
|
|
|
|
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
|
|
// This is required to satisfy `dllimport` references to static data in .rlibs
|
|
// when using MSVC linker. We do this only for data, as linker can fix up
|
|
// code references on its own.
|
|
// See #26591, #27438
|
|
fn create_msvc_imps(
|
|
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
|
llcx: &llvm::Context,
|
|
llmod: &llvm::Module,
|
|
) {
|
|
if !cgcx.msvc_imps_needed {
|
|
return;
|
|
}
|
|
// The x86 ABI seems to require that leading underscores are added to symbol
|
|
// names, so we need an extra underscore on x86. There's also a leading
|
|
// '\x01' here which disables LLVM's symbol mangling (e.g., no extra
|
|
// underscores added in front).
|
|
let prefix = if cgcx.target_arch == "x86" { "\x01__imp__" } else { "\x01__imp_" };
|
|
|
|
let ptr_ty = Type::ptr_llcx(llcx);
|
|
let globals = base::iter_globals(llmod)
|
|
.filter(|&val| {
|
|
llvm::get_linkage(val) == llvm::Linkage::ExternalLinkage && !llvm::is_declaration(val)
|
|
})
|
|
.filter_map(|val| {
|
|
// Exclude some symbols that we know are not Rust symbols.
|
|
let name = llvm::get_value_name(val);
|
|
if ignored(&name) { None } else { Some((val, name)) }
|
|
})
|
|
.map(move |(val, name)| {
|
|
let mut imp_name = prefix.as_bytes().to_vec();
|
|
imp_name.extend(name);
|
|
let imp_name = CString::new(imp_name).unwrap();
|
|
(imp_name, val)
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
for (imp_name, val) in globals {
|
|
let imp = llvm::add_global(llmod, ptr_ty, &imp_name);
|
|
|
|
llvm::set_initializer(imp, val);
|
|
llvm::set_linkage(imp, llvm::Linkage::ExternalLinkage);
|
|
}
|
|
|
|
// Use this function to exclude certain symbols from `__imp` generation.
|
|
fn ignored(symbol_name: &[u8]) -> bool {
|
|
// These are symbols generated by LLVM's profiling instrumentation
|
|
symbol_name.starts_with(b"__llvm_profile_")
|
|
}
|
|
}
|
|
|
|
fn record_artifact_size(
|
|
self_profiler_ref: &SelfProfilerRef,
|
|
artifact_kind: &'static str,
|
|
path: &Path,
|
|
) {
|
|
// Don't stat the file if we are not going to record its size.
|
|
if !self_profiler_ref.enabled() {
|
|
return;
|
|
}
|
|
|
|
if let Some(artifact_name) = path.file_name() {
|
|
let file_size = std::fs::metadata(path).map(|m| m.len()).unwrap_or(0);
|
|
self_profiler_ref.artifact_size(artifact_kind, artifact_name.to_string_lossy(), file_size);
|
|
}
|
|
}
|
|
|
|
fn record_llvm_cgu_instructions_stats(prof: &SelfProfilerRef, llmod: &llvm::Module) {
|
|
if !prof.enabled() {
|
|
return;
|
|
}
|
|
|
|
let raw_stats =
|
|
llvm::build_string(|s| unsafe { llvm::LLVMRustModuleInstructionStats(llmod, s) })
|
|
.expect("cannot get module instruction stats");
|
|
|
|
#[derive(serde::Deserialize)]
|
|
struct InstructionsStats {
|
|
module: String,
|
|
total: u64,
|
|
}
|
|
|
|
let InstructionsStats { module, total } =
|
|
serde_json::from_str(&raw_stats).expect("cannot parse llvm cgu instructions stats");
|
|
prof.artifact_size("cgu_instructions", module, total);
|
|
}
|