Nicholas Nethercote 75b164d836 Use tidy to sort crate attributes for all compiler crates.
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.

For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
  `allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
  sometimes the order is alphabetical, and sometimes there is no
  particular order.
- Sometimes the attributes of a particular kind aren't even grouped
  all together, e.g. there might be a `feature`, then an `allow`, then
  another `feature`.

This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.

Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
  because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
  ignored in `rustfmt.toml`).
2024-06-12 15:49:10 +10:00

230 lines
7.9 KiB
Rust

/*!
# typeck
The type checker is responsible for:
1. Determining the type of each expression.
2. Resolving methods and traits.
3. Guaranteeing that most type rules are met. ("Most?", you say, "why most?"
Well, dear reader, read on.)
The main entry point is [`check_crate()`]. Type checking operates in
several major phases:
1. The collect phase first passes over all items and determines their
type, without examining their "innards".
2. Variance inference then runs to compute the variance of each parameter.
3. Coherence checks for overlapping or orphaned impls.
4. Finally, the check phase then checks function bodies and so forth.
Within the check phase, we check each function body one at a time
(bodies of function expressions are checked as part of the
containing function). Inference is used to supply types wherever
they are unknown. The actual checking of a function itself has
several phases (check, regionck, writeback), as discussed in the
documentation for the [`check`] module.
The type checker is defined into various submodules which are documented
independently:
- hir_ty_lowering: lowers type-system entities from the [HIR][hir] to the
[`rustc_middle::ty`] representation.
- collect: computes the types of each top-level item and enters them into
the `tcx.types` table for later use.
- coherence: enforces coherence rules, builds some tables.
- variance: variance inference
- outlives: outlives inference
- check: walks over function bodies and type checks them, inferring types for
local variables, type parameters, etc as necessary.
- infer: finds the types to use for each type variable such that
all subtyping and assignment constraints are met. In essence, the check
module specifies the constraints, and the infer module solves them.
## Note
This API is completely unstable and subject to change.
*/
// tidy-alphabetical-start
#![allow(internal_features)]
#![allow(rustc::diagnostic_outside_of_impl)]
#![allow(rustc::potential_query_instability)]
#![allow(rustc::untranslatable_diagnostic)]
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![doc(rust_logo)]
#![feature(control_flow_enum)]
#![feature(if_let_guard)]
#![feature(is_sorted)]
#![feature(iter_intersperse)]
#![feature(let_chains)]
#![feature(never_type)]
#![feature(rustdoc_internals)]
#![feature(slice_partition_dedup)]
#![feature(try_blocks)]
// tidy-alphabetical-end
#[macro_use]
extern crate tracing;
// These are used by Clippy.
pub mod check;
pub mod autoderef;
mod bounds;
mod check_unused;
mod coherence;
pub mod hir_ty_lowering;
// FIXME: This module shouldn't be public.
pub mod collect;
mod constrained_generic_params;
mod errors;
pub mod hir_wf_check;
mod impl_wf_check;
mod outlives;
pub mod structured_errors;
mod variance;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_middle::middle;
use rustc_middle::mir::interpret::GlobalId;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::parse::feature_err;
use rustc_span::{symbol::sym, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits;
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
fn require_c_abi_if_c_variadic(tcx: TyCtxt<'_>, decl: &hir::FnDecl<'_>, abi: Abi, span: Span) {
const CONVENTIONS_UNSTABLE: &str =
"`C`, `cdecl`, `system`, `aapcs`, `win64`, `sysv64` or `efiapi`";
const CONVENTIONS_STABLE: &str = "`C` or `cdecl`";
const UNSTABLE_EXPLAIN: &str =
"using calling conventions other than `C` or `cdecl` for varargs functions is unstable";
if !decl.c_variadic || matches!(abi, Abi::C { .. } | Abi::Cdecl { .. }) {
return;
}
let extended_abi_support = tcx.features().extended_varargs_abi_support;
let conventions = match (extended_abi_support, abi.supports_varargs()) {
// User enabled additional ABI support for varargs and function ABI matches those ones.
(true, true) => return,
// Using this ABI would be ok, if the feature for additional ABI support was enabled.
// Return CONVENTIONS_STABLE, because we want the other error to look the same.
(false, true) => {
feature_err(&tcx.sess, sym::extended_varargs_abi_support, span, UNSTABLE_EXPLAIN)
.emit();
CONVENTIONS_STABLE
}
(false, false) => CONVENTIONS_STABLE,
(true, false) => CONVENTIONS_UNSTABLE,
};
tcx.dcx().emit_err(errors::VariadicFunctionCompatibleConvention { span, conventions });
}
pub fn provide(providers: &mut Providers) {
collect::provide(providers);
coherence::provide(providers);
check::provide(providers);
check_unused::provide(providers);
variance::provide(providers);
outlives::provide(providers);
hir_wf_check::provide(providers);
}
pub fn check_crate(tcx: TyCtxt<'_>) {
let _prof_timer = tcx.sess.timer("type_check_crate");
if tcx.features().rustc_attrs {
let _ = tcx.sess.time("outlives_testing", || outlives::test::test_inferred_outlives(tcx));
}
tcx.sess.time("coherence_checking", || {
tcx.hir().par_for_each_module(|module| {
let _ = tcx.ensure().check_mod_type_wf(module);
});
for &trait_def_id in tcx.all_local_trait_impls(()).keys() {
let _ = tcx.ensure().coherent_trait(trait_def_id);
}
// these queries are executed for side-effects (error reporting):
let _ = tcx.ensure().crate_inherent_impls(());
let _ = tcx.ensure().crate_inherent_impls_overlap_check(());
});
if tcx.features().rustc_attrs {
let _ = tcx.sess.time("variance_testing", || variance::test::test_variance(tcx));
}
if tcx.features().rustc_attrs {
let _ = collect::test_opaque_hidden_types(tcx);
}
// Make sure we evaluate all static and (non-associated) const items, even if unused.
// If any of these fail to evaluate, we do not want this crate to pass compilation.
tcx.hir().par_body_owners(|item_def_id| {
let def_kind = tcx.def_kind(item_def_id);
match def_kind {
DefKind::Static { .. } => tcx.ensure().eval_static_initializer(item_def_id),
DefKind::Const if tcx.generics_of(item_def_id).is_empty() => {
let instance = ty::Instance::new(item_def_id.into(), ty::GenericArgs::empty());
let cid = GlobalId { instance, promoted: None };
let param_env = ty::ParamEnv::reveal_all();
tcx.ensure().eval_to_const_value_raw(param_env.and(cid));
}
_ => (),
}
});
// Freeze definitions as we don't add new ones at this point. This improves performance by
// allowing lock-free access to them.
tcx.untracked().definitions.freeze();
// FIXME: Remove this when we implement creating `DefId`s
// for anon constants during their parents' typeck.
// Typeck all body owners in parallel will produce queries
// cycle errors because it may typeck on anon constants directly.
tcx.hir().par_body_owners(|item_def_id| {
let def_kind = tcx.def_kind(item_def_id);
if !matches!(def_kind, DefKind::AnonConst) {
tcx.ensure().typeck(item_def_id);
}
});
tcx.ensure().check_unused_traits(());
}
/// Lower a [`hir::Ty`] to a [`Ty`].
///
/// <div class="warning">
///
/// This function is **quasi-deprecated**. It can cause ICEs if called inside of a body
/// (of a function or constant) and especially if it contains inferred types (`_`).
///
/// It's used in rustdoc and Clippy.
///
/// </div>
pub fn lower_ty<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
// In case there are any projections, etc., find the "environment"
// def-ID that will be used to determine the traits/predicates in
// scope. This is derived from the enclosing item-like thing.
let env_def_id = tcx.hir().get_parent_item(hir_ty.hir_id);
collect::ItemCtxt::new(tcx, env_def_id.def_id).lower_ty(hir_ty)
}