Emil Fresk a11428dfc9 Updated based on dirbaio's comments
- Check for unicast destination
- Source IP matches cache
- Source hardware address matches cache
2024-08-02 15:45:47 +02:00

1258 lines
46 KiB
Rust

// Heads up! Before working on this file you should read the parts
// of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
// and RFCs 8200 and 4861 for any IPv6 and NDISC work.
#[cfg(test)]
mod tests;
#[cfg(feature = "medium-ethernet")]
mod ethernet;
#[cfg(feature = "medium-ieee802154")]
mod ieee802154;
#[cfg(feature = "proto-ipv4")]
mod ipv4;
#[cfg(feature = "proto-ipv6")]
mod ipv6;
#[cfg(feature = "proto-sixlowpan")]
mod sixlowpan;
#[cfg(feature = "proto-igmp")]
mod igmp;
#[cfg(feature = "socket-tcp")]
mod tcp;
#[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
mod udp;
#[cfg(feature = "proto-igmp")]
pub use igmp::MulticastError;
use super::packet::*;
use core::result::Result;
use heapless::{LinearMap, Vec};
#[cfg(feature = "_proto-fragmentation")]
use super::fragmentation::FragKey;
#[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))]
use super::fragmentation::PacketAssemblerSet;
use super::fragmentation::{Fragmenter, FragmentsBuffer};
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
use super::neighbor::{Answer as NeighborAnswer, Cache as NeighborCache};
use super::socket_set::SocketSet;
use crate::config::{
IFACE_MAX_ADDR_COUNT, IFACE_MAX_MULTICAST_GROUP_COUNT,
IFACE_MAX_SIXLOWPAN_ADDRESS_CONTEXT_COUNT,
};
use crate::iface::Routes;
use crate::phy::PacketMeta;
use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken};
use crate::rand::Rand;
use crate::socket::*;
use crate::time::{Duration, Instant};
use crate::wire::*;
macro_rules! check {
($e:expr) => {
match $e {
Ok(x) => x,
Err(_) => {
// concat!/stringify! doesn't work with defmt macros
#[cfg(not(feature = "defmt"))]
net_trace!(concat!("iface: malformed ", stringify!($e)));
#[cfg(feature = "defmt")]
net_trace!("iface: malformed");
return Default::default();
}
}
};
}
use check;
/// A network interface.
///
/// The network interface logically owns a number of other data structures; to avoid
/// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
/// a `&mut [T]`, or `Vec<T>` if a heap is available.
pub struct Interface {
pub(crate) inner: InterfaceInner,
fragments: FragmentsBuffer,
fragmenter: Fragmenter,
}
/// The device independent part of an Ethernet network interface.
///
/// Separating the device from the data required for processing and dispatching makes
/// it possible to borrow them independently. For example, the tx and rx tokens borrow
/// the `device` mutably until they're used, which makes it impossible to call other
/// methods on the `Interface` in this time (since its `device` field is borrowed
/// exclusively). However, it is still possible to call methods on its `inner` field.
pub struct InterfaceInner {
caps: DeviceCapabilities,
now: Instant,
rand: Rand,
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
neighbor_cache: NeighborCache,
hardware_addr: HardwareAddress,
#[cfg(feature = "medium-ieee802154")]
sequence_no: u8,
#[cfg(feature = "medium-ieee802154")]
pan_id: Option<Ieee802154Pan>,
#[cfg(feature = "proto-ipv4-fragmentation")]
ipv4_id: u16,
#[cfg(feature = "proto-sixlowpan")]
sixlowpan_address_context:
Vec<SixlowpanAddressContext, IFACE_MAX_SIXLOWPAN_ADDRESS_CONTEXT_COUNT>,
#[cfg(feature = "proto-sixlowpan-fragmentation")]
tag: u16,
ip_addrs: Vec<IpCidr, IFACE_MAX_ADDR_COUNT>,
any_ip: bool,
routes: Routes,
#[cfg(feature = "proto-igmp")]
ipv4_multicast_groups: LinearMap<Ipv4Address, (), IFACE_MAX_MULTICAST_GROUP_COUNT>,
#[cfg(feature = "proto-ipv6")]
ipv6_multicast_groups: LinearMap<Ipv6Address, (), IFACE_MAX_MULTICAST_GROUP_COUNT>,
/// When to report for (all or) the next multicast group membership via IGMP
#[cfg(feature = "proto-igmp")]
igmp_report_state: IgmpReportState,
}
/// Configuration structure used for creating a network interface.
#[non_exhaustive]
pub struct Config {
/// Random seed.
///
/// It is strongly recommended that the random seed is different on each boot,
/// to avoid problems with TCP port/sequence collisions.
///
/// The seed doesn't have to be cryptographically secure.
pub random_seed: u64,
/// Set the Hardware address the interface will use.
///
/// # Panics
/// Creating the interface panics if the address is not unicast.
pub hardware_addr: HardwareAddress,
/// Set the IEEE802.15.4 PAN ID the interface will use.
///
/// **NOTE**: we use the same PAN ID for destination and source.
#[cfg(feature = "medium-ieee802154")]
pub pan_id: Option<Ieee802154Pan>,
}
impl Config {
pub fn new(hardware_addr: HardwareAddress) -> Self {
Config {
random_seed: 0,
hardware_addr,
#[cfg(feature = "medium-ieee802154")]
pan_id: None,
}
}
}
impl Interface {
/// Create a network interface using the previously provided configuration.
///
/// # Panics
/// This function panics if the [`Config::hardware_address`] does not match
/// the medium of the device.
pub fn new<D>(config: Config, device: &mut D, now: Instant) -> Self
where
D: Device + ?Sized,
{
let caps = device.capabilities();
assert_eq!(
config.hardware_addr.medium(),
caps.medium,
"The hardware address does not match the medium of the interface."
);
let mut rand = Rand::new(config.random_seed);
#[cfg(feature = "medium-ieee802154")]
let mut sequence_no;
#[cfg(feature = "medium-ieee802154")]
loop {
sequence_no = (rand.rand_u32() & 0xff) as u8;
if sequence_no != 0 {
break;
}
}
#[cfg(feature = "proto-sixlowpan")]
let mut tag;
#[cfg(feature = "proto-sixlowpan")]
loop {
tag = rand.rand_u16();
if tag != 0 {
break;
}
}
#[cfg(feature = "proto-ipv4")]
let mut ipv4_id;
#[cfg(feature = "proto-ipv4")]
loop {
ipv4_id = rand.rand_u16();
if ipv4_id != 0 {
break;
}
}
Interface {
fragments: FragmentsBuffer {
#[cfg(feature = "proto-sixlowpan")]
decompress_buf: [0u8; sixlowpan::MAX_DECOMPRESSED_LEN],
#[cfg(feature = "_proto-fragmentation")]
assembler: PacketAssemblerSet::new(),
#[cfg(feature = "_proto-fragmentation")]
reassembly_timeout: Duration::from_secs(60),
},
fragmenter: Fragmenter::new(),
inner: InterfaceInner {
now,
caps,
hardware_addr: config.hardware_addr,
ip_addrs: Vec::new(),
any_ip: false,
routes: Routes::new(),
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
neighbor_cache: NeighborCache::new(),
#[cfg(feature = "proto-igmp")]
ipv4_multicast_groups: LinearMap::new(),
#[cfg(feature = "proto-ipv6")]
ipv6_multicast_groups: LinearMap::new(),
#[cfg(feature = "proto-igmp")]
igmp_report_state: IgmpReportState::Inactive,
#[cfg(feature = "medium-ieee802154")]
sequence_no,
#[cfg(feature = "medium-ieee802154")]
pan_id: config.pan_id,
#[cfg(feature = "proto-sixlowpan-fragmentation")]
tag,
#[cfg(feature = "proto-ipv4-fragmentation")]
ipv4_id,
#[cfg(feature = "proto-sixlowpan")]
sixlowpan_address_context: Vec::new(),
rand,
},
}
}
/// Get the socket context.
///
/// The context is needed for some socket methods.
pub fn context(&mut self) -> &mut InterfaceInner {
&mut self.inner
}
/// Get the HardwareAddress address of the interface.
///
/// # Panics
/// This function panics if the medium is not Ethernet or Ieee802154.
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
pub fn hardware_addr(&self) -> HardwareAddress {
#[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
assert!(self.inner.caps.medium == Medium::Ethernet);
#[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
assert!(self.inner.caps.medium == Medium::Ieee802154);
#[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
assert!(
self.inner.caps.medium == Medium::Ethernet
|| self.inner.caps.medium == Medium::Ieee802154
);
self.inner.hardware_addr
}
/// Set the HardwareAddress address of the interface.
///
/// # Panics
/// This function panics if the address is not unicast, and if the medium is not Ethernet or
/// Ieee802154.
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
pub fn set_hardware_addr(&mut self, addr: HardwareAddress) {
#[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
assert!(self.inner.caps.medium == Medium::Ethernet);
#[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
assert!(self.inner.caps.medium == Medium::Ieee802154);
#[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
assert!(
self.inner.caps.medium == Medium::Ethernet
|| self.inner.caps.medium == Medium::Ieee802154
);
InterfaceInner::check_hardware_addr(&addr);
self.inner.hardware_addr = addr;
}
/// Get the IP addresses of the interface.
pub fn ip_addrs(&self) -> &[IpCidr] {
self.inner.ip_addrs.as_ref()
}
/// Get the first IPv4 address if present.
#[cfg(feature = "proto-ipv4")]
pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
self.inner.ipv4_addr()
}
/// Get the first IPv6 address if present.
#[cfg(feature = "proto-ipv6")]
pub fn ipv6_addr(&self) -> Option<Ipv6Address> {
self.inner.ipv6_addr()
}
/// Get an address from the interface that could be used as source address. For IPv4, this is
/// the first IPv4 address from the list of addresses. For IPv6, the address is based on the
/// destination address and uses RFC6724 for selecting the source address.
pub fn get_source_address(&self, dst_addr: &IpAddress) -> Option<IpAddress> {
self.inner.get_source_address(dst_addr)
}
/// Get an address from the interface that could be used as source address. This is the first
/// IPv4 address from the list of addresses in the interface.
#[cfg(feature = "proto-ipv4")]
pub fn get_source_address_ipv4(&self, dst_addr: &Ipv4Address) -> Option<Ipv4Address> {
self.inner.get_source_address_ipv4(dst_addr)
}
/// Get an address from the interface that could be used as source address. The selection is
/// based on RFC6724.
#[cfg(feature = "proto-ipv6")]
pub fn get_source_address_ipv6(&self, dst_addr: &Ipv6Address) -> Ipv6Address {
self.inner.get_source_address_ipv6(dst_addr)
}
/// Update the IP addresses of the interface.
///
/// # Panics
/// This function panics if any of the addresses are not unicast.
pub fn update_ip_addrs<F: FnOnce(&mut Vec<IpCidr, IFACE_MAX_ADDR_COUNT>)>(&mut self, f: F) {
f(&mut self.inner.ip_addrs);
InterfaceInner::flush_neighbor_cache(&mut self.inner);
InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
}
/// Check whether the interface has the given IP address assigned.
pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
self.inner.has_ip_addr(addr)
}
pub fn routes(&self) -> &Routes {
&self.inner.routes
}
pub fn routes_mut(&mut self) -> &mut Routes {
&mut self.inner.routes
}
/// Enable or disable the AnyIP capability.
///
/// AnyIP allowins packets to be received
/// locally on IP addresses other than the interface's configured [ip_addrs].
/// When AnyIP is enabled and a route prefix in [`routes`](Self::routes) specifies one of
/// the interface's [`ip_addrs`](Self::ip_addrs) as its gateway, the interface will accept
/// packets addressed to that prefix.
pub fn set_any_ip(&mut self, any_ip: bool) {
self.inner.any_ip = any_ip;
}
/// Get whether AnyIP is enabled.
///
/// See [`set_any_ip`](Self::set_any_ip) for details on AnyIP
pub fn any_ip(&self) -> bool {
self.inner.any_ip
}
/// Get the packet reassembly timeout.
#[cfg(feature = "_proto-fragmentation")]
pub fn reassembly_timeout(&self) -> Duration {
self.fragments.reassembly_timeout
}
/// Set the packet reassembly timeout.
#[cfg(feature = "_proto-fragmentation")]
pub fn set_reassembly_timeout(&mut self, timeout: Duration) {
if timeout > Duration::from_secs(60) {
net_debug!("RFC 4944 specifies that the reassembly timeout MUST be set to a maximum of 60 seconds");
}
self.fragments.reassembly_timeout = timeout;
}
/// Transmit packets queued in the given sockets, and receive packets queued
/// in the device.
///
/// This function returns a boolean value indicating whether any packets were
/// processed or emitted, and thus, whether the readiness of any socket might
/// have changed.
///
/// # Note
/// This function performs a bounded amount of work per call to avoid
/// starving other tasks of CPU time. If it returns true, there may still be
/// packets to be received or transmitted. Depending on system design,
/// calling this function in a loop may cause a denial of service if
/// packets cannot be processed faster than they arrive.
pub fn poll<D>(
&mut self,
timestamp: Instant,
device: &mut D,
sockets: &mut SocketSet<'_>,
) -> bool
where
D: Device + ?Sized,
{
self.inner.now = timestamp;
#[cfg(feature = "_proto-fragmentation")]
self.fragments.assembler.remove_expired(timestamp);
match self.inner.caps.medium {
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 =>
{
#[cfg(feature = "proto-sixlowpan-fragmentation")]
if self.sixlowpan_egress(device) {
return true;
}
}
#[cfg(any(feature = "medium-ethernet", feature = "medium-ip"))]
_ =>
{
#[cfg(feature = "proto-ipv4-fragmentation")]
if self.ipv4_egress(device) {
return true;
}
}
}
let mut readiness_may_have_changed = self.socket_ingress(device, sockets);
readiness_may_have_changed |= self.socket_egress(device, sockets);
#[cfg(feature = "proto-igmp")]
{
readiness_may_have_changed |= self.igmp_egress(device);
}
readiness_may_have_changed
}
/// Return a _soft deadline_ for calling [poll] the next time.
/// The [Instant] returned is the time at which you should call [poll] next.
/// It is harmless (but wastes energy) to call it before the [Instant], and
/// potentially harmful (impacting quality of service) to call it after the
/// [Instant]
///
/// [poll]: #method.poll
/// [Instant]: struct.Instant.html
pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Instant> {
self.inner.now = timestamp;
#[cfg(feature = "_proto-fragmentation")]
if !self.fragmenter.is_empty() {
return Some(Instant::from_millis(0));
}
let inner = &mut self.inner;
sockets
.items()
.filter_map(move |item| {
let socket_poll_at = item.socket.poll_at(inner);
match item
.meta
.poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr))
{
PollAt::Ingress => None,
PollAt::Time(instant) => Some(instant),
PollAt::Now => Some(Instant::from_millis(0)),
}
})
.min()
}
/// Return an _advisory wait time_ for calling [poll] the next time.
/// The [Duration] returned is the time left to wait before calling [poll] next.
/// It is harmless (but wastes energy) to call it before the [Duration] has passed,
/// and potentially harmful (impacting quality of service) to call it after the
/// [Duration] has passed.
///
/// [poll]: #method.poll
/// [Duration]: struct.Duration.html
pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Duration> {
match self.poll_at(timestamp, sockets) {
Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp),
Some(_) => Some(Duration::from_millis(0)),
_ => None,
}
}
fn socket_ingress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
where
D: Device + ?Sized,
{
let mut processed_any = false;
let Some((rx_token, tx_token)) = device.receive(self.inner.now) else {
return processed_any;
};
let rx_meta = rx_token.meta();
rx_token.consume(|frame| {
if frame.is_empty() {
return;
}
match self.inner.caps.medium {
#[cfg(feature = "medium-ethernet")]
Medium::Ethernet => {
if let Some(packet) =
self.inner
.process_ethernet(sockets, rx_meta, frame, &mut self.fragments)
{
if let Err(err) =
self.inner.dispatch(tx_token, packet, &mut self.fragmenter)
{
net_debug!("Failed to send response: {:?}", err);
}
}
}
#[cfg(feature = "medium-ip")]
Medium::Ip => {
if let Some(packet) =
self.inner
.process_ip(sockets, rx_meta, frame, &mut self.fragments)
{
if let Err(err) = self.inner.dispatch_ip(
tx_token,
PacketMeta::default(),
packet,
&mut self.fragmenter,
) {
net_debug!("Failed to send response: {:?}", err);
}
}
}
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 => {
if let Some(packet) =
self.inner
.process_ieee802154(sockets, rx_meta, frame, &mut self.fragments)
{
if let Err(err) = self.inner.dispatch_ip(
tx_token,
PacketMeta::default(),
packet,
&mut self.fragmenter,
) {
net_debug!("Failed to send response: {:?}", err);
}
}
}
}
processed_any = true;
});
processed_any
}
fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
where
D: Device + ?Sized,
{
let _caps = device.capabilities();
enum EgressError {
Exhausted,
Dispatch,
}
let mut emitted_any = false;
for item in sockets.items_mut() {
if !item
.meta
.egress_permitted(self.inner.now, |ip_addr| self.inner.has_neighbor(&ip_addr))
{
continue;
}
let mut neighbor_addr = None;
let mut respond = |inner: &mut InterfaceInner, meta: PacketMeta, response: Packet| {
neighbor_addr = Some(response.ip_repr().dst_addr());
let t = device.transmit(inner.now).ok_or_else(|| {
net_debug!("failed to transmit IP: device exhausted");
EgressError::Exhausted
})?;
inner
.dispatch_ip(t, meta, response, &mut self.fragmenter)
.map_err(|_| EgressError::Dispatch)?;
emitted_any = true;
Ok(())
};
let result = match &mut item.socket {
#[cfg(feature = "socket-raw")]
Socket::Raw(socket) => socket.dispatch(&mut self.inner, |inner, (ip, raw)| {
respond(
inner,
PacketMeta::default(),
Packet::new(ip, IpPayload::Raw(raw)),
)
}),
#[cfg(feature = "socket-icmp")]
Socket::Icmp(socket) => {
socket.dispatch(&mut self.inner, |inner, response| match response {
#[cfg(feature = "proto-ipv4")]
(IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => respond(
inner,
PacketMeta::default(),
Packet::new_ipv4(ipv4_repr, IpPayload::Icmpv4(icmpv4_repr)),
),
#[cfg(feature = "proto-ipv6")]
(IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => respond(
inner,
PacketMeta::default(),
Packet::new_ipv6(ipv6_repr, IpPayload::Icmpv6(icmpv6_repr)),
),
#[allow(unreachable_patterns)]
_ => unreachable!(),
})
}
#[cfg(feature = "socket-udp")]
Socket::Udp(socket) => {
socket.dispatch(&mut self.inner, |inner, meta, (ip, udp, payload)| {
respond(inner, meta, Packet::new(ip, IpPayload::Udp(udp, payload)))
})
}
#[cfg(feature = "socket-tcp")]
Socket::Tcp(socket) => socket.dispatch(&mut self.inner, |inner, (ip, tcp)| {
respond(
inner,
PacketMeta::default(),
Packet::new(ip, IpPayload::Tcp(tcp)),
)
}),
#[cfg(feature = "socket-dhcpv4")]
Socket::Dhcpv4(socket) => {
socket.dispatch(&mut self.inner, |inner, (ip, udp, dhcp)| {
respond(
inner,
PacketMeta::default(),
Packet::new_ipv4(ip, IpPayload::Dhcpv4(udp, dhcp)),
)
})
}
#[cfg(feature = "socket-dns")]
Socket::Dns(socket) => socket.dispatch(&mut self.inner, |inner, (ip, udp, dns)| {
respond(
inner,
PacketMeta::default(),
Packet::new(ip, IpPayload::Udp(udp, dns)),
)
}),
};
match result {
Err(EgressError::Exhausted) => break, // Device buffer full.
Err(EgressError::Dispatch) => {
// `NeighborCache` already takes care of rate limiting the neighbor discovery
// requests from the socket. However, without an additional rate limiting
// mechanism, we would spin on every socket that has yet to discover its
// neighbor.
item.meta.neighbor_missing(
self.inner.now,
neighbor_addr.expect("non-IP response packet"),
);
}
Ok(()) => {}
}
}
emitted_any
}
}
impl InterfaceInner {
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn now(&self) -> Instant {
self.now
}
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn hardware_addr(&self) -> HardwareAddress {
self.hardware_addr
}
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities {
self.caps.checksum.clone()
}
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn ip_mtu(&self) -> usize {
self.caps.ip_mtu()
}
#[allow(unused)] // unused depending on which sockets are enabled, and in tests
pub(crate) fn rand(&mut self) -> &mut Rand {
&mut self.rand
}
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn get_source_address(&self, dst_addr: &IpAddress) -> Option<IpAddress> {
match dst_addr {
#[cfg(feature = "proto-ipv4")]
IpAddress::Ipv4(addr) => self.get_source_address_ipv4(addr).map(|a| a.into()),
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(addr) => Some(self.get_source_address_ipv6(addr).into()),
}
}
#[cfg(test)]
#[allow(unused)] // unused depending on which sockets are enabled
pub(crate) fn set_now(&mut self, now: Instant) {
self.now = now
}
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
fn check_hardware_addr(addr: &HardwareAddress) {
if !addr.is_unicast() {
panic!("Hardware address {addr} is not unicast")
}
}
fn check_ip_addrs(addrs: &[IpCidr]) {
for cidr in addrs {
if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
panic!("IP address {} is not unicast", cidr.address())
}
}
}
/// Check whether the interface has the given IP address assigned.
fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
let addr = addr.into();
self.ip_addrs.iter().any(|probe| probe.address() == addr)
}
/// Check whether the interface listens to given destination multicast IP address.
///
/// If built without feature `proto-igmp` this function will
/// always return `false` when using IPv4.
fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
match addr.into() {
#[cfg(feature = "proto-igmp")]
IpAddress::Ipv4(key) => {
key == Ipv4Address::MULTICAST_ALL_SYSTEMS
|| self.ipv4_multicast_groups.get(&key).is_some()
}
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(key) => {
key == Ipv6Address::LINK_LOCAL_ALL_NODES
|| self.has_solicited_node(key)
|| self.ipv6_multicast_groups.get(&key).is_some()
}
#[cfg(feature = "proto-rpl")]
IpAddress::Ipv6(Ipv6Address::LINK_LOCAL_ALL_RPL_NODES) => true,
#[allow(unreachable_patterns)]
_ => false,
}
}
#[cfg(feature = "medium-ip")]
fn process_ip<'frame>(
&mut self,
sockets: &mut SocketSet,
meta: PacketMeta,
ip_payload: &'frame [u8],
frag: &'frame mut FragmentsBuffer,
) -> Option<Packet<'frame>> {
match IpVersion::of_packet(ip_payload) {
#[cfg(feature = "proto-ipv4")]
Ok(IpVersion::Ipv4) => {
let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload));
self.process_ipv4(sockets, meta, HardwareAddress::Ip, &ipv4_packet, frag)
}
#[cfg(feature = "proto-ipv6")]
Ok(IpVersion::Ipv6) => {
let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload));
self.process_ipv6(sockets, meta, HardwareAddress::Ip, &ipv6_packet)
}
// Drop all other traffic.
_ => None,
}
}
#[cfg(feature = "socket-raw")]
fn raw_socket_filter(
&mut self,
sockets: &mut SocketSet,
ip_repr: &IpRepr,
ip_payload: &[u8],
) -> bool {
let mut handled_by_raw_socket = false;
// Pass every IP packet to all raw sockets we have registered.
for raw_socket in sockets
.items_mut()
.filter_map(|i| raw::Socket::downcast_mut(&mut i.socket))
{
if raw_socket.accepts(ip_repr) {
raw_socket.process(self, ip_repr, ip_payload);
handled_by_raw_socket = true;
}
}
handled_by_raw_socket
}
/// Checks if an address is broadcast, taking into account ipv4 subnet-local
/// broadcast addresses.
pub(crate) fn is_broadcast(&self, address: &IpAddress) -> bool {
match address {
#[cfg(feature = "proto-ipv4")]
IpAddress::Ipv4(address) => self.is_broadcast_v4(*address),
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(_) => false,
}
}
#[cfg(feature = "medium-ethernet")]
fn dispatch<Tx>(
&mut self,
tx_token: Tx,
packet: EthernetPacket,
frag: &mut Fragmenter,
) -> Result<(), DispatchError>
where
Tx: TxToken,
{
match packet {
#[cfg(feature = "proto-ipv4")]
EthernetPacket::Arp(arp_repr) => {
let dst_hardware_addr = match arp_repr {
ArpRepr::EthernetIpv4 {
target_hardware_addr,
..
} => target_hardware_addr,
};
self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
frame.set_dst_addr(dst_hardware_addr);
frame.set_ethertype(EthernetProtocol::Arp);
let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
arp_repr.emit(&mut packet);
})
}
EthernetPacket::Ip(packet) => {
self.dispatch_ip(tx_token, PacketMeta::default(), packet, frag)
}
}
}
fn in_same_network(&self, addr: &IpAddress) -> bool {
self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr))
}
fn route(&self, addr: &IpAddress, timestamp: Instant) -> Option<IpAddress> {
// Send directly.
// note: no need to use `self.is_broadcast()` to check for subnet-local broadcast addrs
// here because `in_same_network` will already return true.
if self.in_same_network(addr) || addr.is_broadcast() {
return Some(*addr);
}
// Route via a router.
self.routes.lookup(addr, timestamp)
}
fn has_neighbor(&self, addr: &IpAddress) -> bool {
match self.route(addr, self.now) {
Some(_routed_addr) => match self.caps.medium {
#[cfg(feature = "medium-ethernet")]
Medium::Ethernet => self.neighbor_cache.lookup(&_routed_addr, self.now).found(),
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 => self.neighbor_cache.lookup(&_routed_addr, self.now).found(),
#[cfg(feature = "medium-ip")]
Medium::Ip => true,
},
None => false,
}
}
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
fn lookup_hardware_addr<Tx>(
&mut self,
tx_token: Tx,
src_addr: &IpAddress,
dst_addr: &IpAddress,
fragmenter: &mut Fragmenter,
) -> Result<(HardwareAddress, Tx), DispatchError>
where
Tx: TxToken,
{
if self.is_broadcast(dst_addr) {
let hardware_addr = match self.caps.medium {
#[cfg(feature = "medium-ethernet")]
Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST),
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST),
#[cfg(feature = "medium-ip")]
Medium::Ip => unreachable!(),
};
return Ok((hardware_addr, tx_token));
}
if dst_addr.is_multicast() {
let b = dst_addr.as_bytes();
let hardware_addr = match *dst_addr {
#[cfg(feature = "proto-ipv4")]
IpAddress::Ipv4(_addr) => match self.caps.medium {
#[cfg(feature = "medium-ethernet")]
Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
0x01,
0x00,
0x5e,
b[1] & 0x7F,
b[2],
b[3],
])),
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 => unreachable!(),
#[cfg(feature = "medium-ip")]
Medium::Ip => unreachable!(),
},
#[cfg(feature = "proto-ipv6")]
IpAddress::Ipv6(_addr) => match self.caps.medium {
#[cfg(feature = "medium-ethernet")]
Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
0x33, 0x33, b[12], b[13], b[14], b[15],
])),
#[cfg(feature = "medium-ieee802154")]
Medium::Ieee802154 => {
// Not sure if this is correct
HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST)
}
#[cfg(feature = "medium-ip")]
Medium::Ip => unreachable!(),
},
};
return Ok((hardware_addr, tx_token));
}
let dst_addr = self
.route(dst_addr, self.now)
.ok_or(DispatchError::NoRoute)?;
match self.neighbor_cache.lookup(&dst_addr, self.now) {
NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)),
NeighborAnswer::RateLimited => return Err(DispatchError::NeighborPending),
_ => (), // XXX
}
match (src_addr, dst_addr) {
#[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
(&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr))
if matches!(self.caps.medium, Medium::Ethernet) =>
{
net_debug!(
"address {} not in neighbor cache, sending ARP request",
dst_addr
);
let src_hardware_addr = self.hardware_addr.ethernet_or_panic();
let arp_repr = ArpRepr::EthernetIpv4 {
operation: ArpOperation::Request,
source_hardware_addr: src_hardware_addr,
source_protocol_addr: src_addr,
target_hardware_addr: EthernetAddress::BROADCAST,
target_protocol_addr: dst_addr,
};
if let Err(e) =
self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
frame.set_dst_addr(EthernetAddress::BROADCAST);
frame.set_ethertype(EthernetProtocol::Arp);
arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
})
{
net_debug!("Failed to dispatch ARP request: {:?}", e);
return Err(DispatchError::NeighborPending);
}
}
#[cfg(feature = "proto-ipv6")]
(&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
net_debug!(
"address {} not in neighbor cache, sending Neighbor Solicitation",
dst_addr
);
let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
target_addr: dst_addr,
lladdr: Some(self.hardware_addr.into()),
});
let packet = Packet::new_ipv6(
Ipv6Repr {
src_addr,
dst_addr: dst_addr.solicited_node(),
next_header: IpProtocol::Icmpv6,
payload_len: solicit.buffer_len(),
hop_limit: 0xff,
},
IpPayload::Icmpv6(solicit),
);
if let Err(e) =
self.dispatch_ip(tx_token, PacketMeta::default(), packet, fragmenter)
{
net_debug!("Failed to dispatch NDISC solicit: {:?}", e);
return Err(DispatchError::NeighborPending);
}
}
#[allow(unreachable_patterns)]
_ => (),
}
// The request got dispatched, limit the rate on the cache.
self.neighbor_cache.limit_rate(self.now);
Err(DispatchError::NeighborPending)
}
fn flush_neighbor_cache(&mut self) {
#[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
self.neighbor_cache.flush()
}
fn dispatch_ip<Tx: TxToken>(
&mut self,
// NOTE(unused_mut): tx_token isn't always mutated, depending on
// the feature set that is used.
#[allow(unused_mut)] mut tx_token: Tx,
meta: PacketMeta,
packet: Packet,
frag: &mut Fragmenter,
) -> Result<(), DispatchError> {
let mut ip_repr = packet.ip_repr();
assert!(!ip_repr.dst_addr().is_unspecified());
// Dispatch IEEE802.15.4:
#[cfg(feature = "medium-ieee802154")]
if matches!(self.caps.medium, Medium::Ieee802154) {
let (addr, tx_token) = self.lookup_hardware_addr(
tx_token,
&ip_repr.src_addr(),
&ip_repr.dst_addr(),
frag,
)?;
let addr = addr.ieee802154_or_panic();
self.dispatch_ieee802154(addr, tx_token, meta, packet, frag);
return Ok(());
}
// Dispatch IP/Ethernet:
let caps = self.caps.clone();
#[cfg(feature = "proto-ipv4-fragmentation")]
let ipv4_id = self.next_ipv4_frag_ident();
// First we calculate the total length that we will have to emit.
let mut total_len = ip_repr.buffer_len();
// Add the size of the Ethernet header if the medium is Ethernet.
#[cfg(feature = "medium-ethernet")]
if matches!(self.caps.medium, Medium::Ethernet) {
total_len = EthernetFrame::<&[u8]>::buffer_len(total_len);
}
// If the medium is Ethernet, then we need to retrieve the destination hardware address.
#[cfg(feature = "medium-ethernet")]
let (dst_hardware_addr, mut tx_token) = match self.caps.medium {
Medium::Ethernet => {
match self.lookup_hardware_addr(
tx_token,
&ip_repr.src_addr(),
&ip_repr.dst_addr(),
frag,
)? {
(HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token),
(_, _) => unreachable!(),
}
}
_ => (EthernetAddress([0; 6]), tx_token),
};
// Emit function for the Ethernet header.
#[cfg(feature = "medium-ethernet")]
let emit_ethernet = |repr: &IpRepr, tx_buffer: &mut [u8]| {
let mut frame = EthernetFrame::new_unchecked(tx_buffer);
let src_addr = self.hardware_addr.ethernet_or_panic();
frame.set_src_addr(src_addr);
frame.set_dst_addr(dst_hardware_addr);
match repr.version() {
#[cfg(feature = "proto-ipv4")]
IpVersion::Ipv4 => frame.set_ethertype(EthernetProtocol::Ipv4),
#[cfg(feature = "proto-ipv6")]
IpVersion::Ipv6 => frame.set_ethertype(EthernetProtocol::Ipv6),
}
Ok(())
};
// Emit function for the IP header and payload.
let emit_ip = |repr: &IpRepr, mut tx_buffer: &mut [u8]| {
repr.emit(&mut tx_buffer, &self.caps.checksum);
let payload = &mut tx_buffer[repr.header_len()..];
packet.emit_payload(repr, payload, &caps)
};
let total_ip_len = ip_repr.buffer_len();
match &mut ip_repr {
#[cfg(feature = "proto-ipv4")]
IpRepr::Ipv4(repr) => {
// If we have an IPv4 packet, then we need to check if we need to fragment it.
if total_ip_len > self.caps.max_transmission_unit {
#[cfg(feature = "proto-ipv4-fragmentation")]
{
net_debug!("start fragmentation");
// Calculate how much we will send now (including the Ethernet header).
let tx_len = self.caps.max_transmission_unit;
let ip_header_len = repr.buffer_len();
let first_frag_ip_len = self.caps.ip_mtu();
if frag.buffer.len() < total_ip_len {
net_debug!(
"Fragmentation buffer is too small, at least {} needed. Dropping",
total_ip_len
);
return Ok(());
}
#[cfg(feature = "medium-ethernet")]
{
frag.ipv4.dst_hardware_addr = dst_hardware_addr;
}
// Save the total packet len (without the Ethernet header, but with the first
// IP header).
frag.packet_len = total_ip_len;
// Save the IP header for other fragments.
frag.ipv4.repr = *repr;
// Save how much bytes we will send now.
frag.sent_bytes = first_frag_ip_len;
// Modify the IP header
repr.payload_len = first_frag_ip_len - repr.buffer_len();
// Emit the IP header to the buffer.
emit_ip(&ip_repr, &mut frag.buffer);
let mut ipv4_packet = Ipv4Packet::new_unchecked(&mut frag.buffer[..]);
frag.ipv4.ident = ipv4_id;
ipv4_packet.set_ident(ipv4_id);
ipv4_packet.set_more_frags(true);
ipv4_packet.set_dont_frag(false);
ipv4_packet.set_frag_offset(0);
if caps.checksum.ipv4.tx() {
ipv4_packet.fill_checksum();
}
// Transmit the first packet.
tx_token.consume(tx_len, |mut tx_buffer| {
#[cfg(feature = "medium-ethernet")]
if matches!(self.caps.medium, Medium::Ethernet) {
emit_ethernet(&ip_repr, tx_buffer)?;
tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..];
}
// Change the offset for the next packet.
frag.ipv4.frag_offset = (first_frag_ip_len - ip_header_len) as u16;
// Copy the IP header and the payload.
tx_buffer[..first_frag_ip_len]
.copy_from_slice(&frag.buffer[..first_frag_ip_len]);
Ok(())
})
}
#[cfg(not(feature = "proto-ipv4-fragmentation"))]
{
net_debug!("Enable the `proto-ipv4-fragmentation` feature for fragmentation support.");
Ok(())
}
} else {
tx_token.set_meta(meta);
// No fragmentation is required.
tx_token.consume(total_len, |mut tx_buffer| {
#[cfg(feature = "medium-ethernet")]
if matches!(self.caps.medium, Medium::Ethernet) {
emit_ethernet(&ip_repr, tx_buffer)?;
tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..];
}
emit_ip(&ip_repr, tx_buffer);
Ok(())
})
}
}
// We don't support IPv6 fragmentation yet.
#[cfg(feature = "proto-ipv6")]
IpRepr::Ipv6(_) => tx_token.consume(total_len, |mut tx_buffer| {
#[cfg(feature = "medium-ethernet")]
if matches!(self.caps.medium, Medium::Ethernet) {
emit_ethernet(&ip_repr, tx_buffer)?;
tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..];
}
emit_ip(&ip_repr, tx_buffer);
Ok(())
}),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
enum DispatchError {
/// No route to dispatch this packet. Retrying won't help unless
/// configuration is changed.
NoRoute,
/// We do have a route to dispatch this packet, but we haven't discovered
/// the neighbor for it yet. Discovery has been initiated, dispatch
/// should be retried later.
NeighborPending,
}