uds: update to std-future (#1227)

This commit is contained in:
Yin Guanhao 2019-07-09 05:58:40 +08:00 committed by Carl Lerche
parent 88e775dcf0
commit 80915906d8
16 changed files with 693 additions and 573 deletions

View File

@ -19,5 +19,5 @@ members = [
"tokio-tcp",
# "tokio-tls",
"tokio-udp",
# "tokio-uds",
"tokio-uds",
]

View File

@ -37,7 +37,8 @@ jobs:
- incoming
# - tokio-tls
tokio-udp: []
# - tokio-uds
tokio-uds:
- async-traits
# Test crates that are NOT platform specific
- template: ci/azure-test-stable.yml

View File

@ -21,9 +21,12 @@ Unix Domain sockets for Tokio
categories = ["asynchronous"]
publish = false
[features]
async-traits = ["futures-core-preview"]
[dependencies]
bytes = "0.4.8"
futures = "0.1.21"
futures-core-preview = { version = "0.3.0-alpha.17", optional = true }
iovec = "0.1.2"
libc = "0.2.42"
log = "0.4.2"
@ -36,3 +39,4 @@ tokio-io = { version = "0.2.0", path = "../tokio-io" }
[dev-dependencies]
tokio = { version = "0.2.0", path = "../tokio" }
tempfile = "3"
futures-preview = "0.3.0-alpha.17"

View File

@ -1,5 +1,4 @@
use crate::{RecvDgram, SendDgram};
use futures::{try_ready, Async, Poll};
use crate::{Recv, RecvFrom, Send, SendTo};
use mio::Ready;
use mio_uds;
use std::fmt;
@ -8,6 +7,8 @@ use std::net::Shutdown;
use std::os::unix::io::{AsRawFd, RawFd};
use std::os::unix::net::{self, SocketAddr};
use std::path::Path;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio_reactor::{Handle, PollEvented};
/// An I/O object representing a Unix datagram socket.
@ -68,14 +69,219 @@ impl UnixDatagram {
self.io.get_ref().connect(path)
}
/// Returns a future that sends data on the socket to the remote address to which it is connected.
/// On success, the future will resolve to the number of bytes written.
///
/// The [`connect`] method will connect this socket to a remote address. The future
/// will resolve to an error if the socket is not connected.
///
/// [`connect`]: #method.connect
pub fn send<'a, 'b>(&'a mut self, buf: &'b [u8]) -> Send<'a, 'b> {
Send::new(self, buf)
}
/// Sends data on the socket to the remote address to which it is connected.
///
/// The [`connect`] method will connect this socket to a remote address. This
/// method will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
///
/// # Return
///
/// On success, returns `Poll::Ready(Ok(num_bytes_written))`.
///
/// If the socket is not ready for writing, the method returns
/// `Poll::Pending` and arranges for the current task to receive a
/// notification when the socket becomes writable.
pub fn poll_send(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.poll_send_priv(cx, buf)
}
// Poll IO functions that takes `&self` are provided for the split API.
//
// They are not public because (taken from the doc of `PollEvented`):
//
// While `PollEvented` is `Sync` (if the underlying I/O type is `Sync`), the
// caller must ensure that there are at most two tasks that use a
// `PollEvented` instance concurrently. One for reading and one for writing.
// While violating this requirement is "safe" from a Rust memory model point
// of view, it will result in unexpected behavior in the form of lost
// notifications and tasks hanging.
pub(crate) fn poll_send_priv(
&self,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_write_ready(cx))?;
match self.io.get_ref().send(buf) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready(cx)?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
/// Returns a future that receives a single datagram message on the socket from
/// the remote address to which it is connected. On success, the future will resolve
/// to the number of bytes read.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// The [`connect`] method will connect this socket to a remote address. The future
/// will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
pub fn recv<'a, 'b>(&'a mut self, buf: &'b mut [u8]) -> Recv<'a, 'b> {
Recv::new(self, buf)
}
/// Receives a single datagram message on the socket from the remote address to
/// which it is connected. On success, returns the number of bytes read.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// The [`connect`] method will connect this socket to a remote address. This
/// method will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
///
/// # Return
///
/// On success, returns `Poll::Ready(Ok(num_bytes_read))`.
///
/// If no data is available for reading, the method returns
/// `Poll::Pending` and arranges for the current task to receive a
/// notification when the socket becomes receivable or is closed.
pub fn poll_recv(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
self.poll_recv_priv(cx, buf)
}
pub(crate) fn poll_recv_priv(
&self,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_read_ready(cx, mio::Ready::readable()))?;
match self.io.get_ref().recv(buf) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(cx, mio::Ready::readable())?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
/// Returns a future that sends data on the socket to the given address.
/// On success, the future will resolve to the number of bytes written.
///
/// The future will resolve to an error if the IP version of the socket does
/// not match that of `target`.
pub fn send_to<'a, 'b, P>(&'a mut self, buf: &'b [u8], target: P) -> SendTo<'a, 'b, P>
where
P: AsRef<Path> + Unpin,
{
SendTo::new(self, buf, target)
}
/// Sends data on the socket to the given address. On success, returns the
/// number of bytes written.
///
/// This will return an error when the IP version of the local socket
/// does not match that of `target`.
///
/// # Return
///
/// On success, returns `Poll::Ready(Ok(num_bytes_written))`.
///
/// If the socket is not ready for writing, the method returns
/// `Poll::Pending` and arranges for the current task to receive a
/// notification when the socket becomes writable.
pub fn poll_send_to<P: AsRef<Path>>(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
target: P,
) -> Poll<io::Result<usize>> {
self.poll_send_to_priv(cx, buf, target.as_ref())
}
pub(crate) fn poll_send_to_priv(
&self,
cx: &mut Context<'_>,
buf: &[u8],
target: &Path,
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_write_ready(cx))?;
match self.io.get_ref().send_to(buf, target) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready(cx)?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
/// Returns a future that receives a single datagram on the socket. On success,
/// the future resolves to the number of bytes read and the origin.
///
/// The function must be called with valid byte array `buf` of sufficient size
/// to hold the message bytes. If a message is too long to fit in the supplied
/// buffer, excess bytes may be discarded.
pub fn recv_from<'a, 'b>(&'a mut self, buf: &'b mut [u8]) -> RecvFrom<'a, 'b> {
RecvFrom::new(self, buf)
}
/// Receives data from the socket. On success, returns the number of bytes
/// read and the address from whence the data came.
pub fn poll_recv_from(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<Result<(usize, SocketAddr), io::Error>> {
self.poll_recv_from_priv(cx, buf)
}
pub(crate) fn poll_recv_from_priv(
&self,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<Result<(usize, SocketAddr), io::Error>> {
ready!(self.io.poll_read_ready(cx, mio::Ready::readable()))?;
match self.io.get_ref().recv_from(buf) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(cx, mio::Ready::readable())?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
/// Test whether this socket is ready to be read or not.
pub fn poll_read_ready(&self, ready: Ready) -> Poll<Ready, io::Error> {
self.io.poll_read_ready(ready)
pub fn poll_read_ready(&self, cx: &mut Context<'_>, ready: Ready) -> Poll<io::Result<Ready>> {
self.io.poll_read_ready(cx, ready)
}
/// Test whether this socket is ready to be written to or not.
pub fn poll_write_ready(&self) -> Poll<Ready, io::Error> {
self.io.poll_write_ready()
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
self.io.poll_write_ready(cx)
}
/// Returns the local address that this socket is bound to.
@ -90,94 +296,6 @@ impl UnixDatagram {
self.io.get_ref().peer_addr()
}
/// Receives data from the socket.
///
/// On success, returns the number of bytes read and the address from
/// whence the data came.
pub fn poll_recv_from(&self, buf: &mut [u8]) -> Poll<(usize, SocketAddr), io::Error> {
try_ready!(self.io.poll_read_ready(Ready::readable()));
match self.io.get_ref().recv_from(buf) {
Ok(ret) => Ok(ret.into()),
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(Ready::readable())?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
/// Receives data from the socket.
///
/// On success, returns the number of bytes read.
pub fn poll_recv(&self, buf: &mut [u8]) -> Poll<usize, io::Error> {
try_ready!(self.io.poll_read_ready(Ready::readable()));
match self.io.get_ref().recv(buf) {
Ok(ret) => Ok(ret.into()),
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(Ready::readable())?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
/// Returns a future for receiving a datagram. See the documentation on RecvDgram for details.
pub fn recv_dgram<T>(self, buf: T) -> RecvDgram<T>
where
T: AsMut<[u8]>,
{
RecvDgram::new(self, buf)
}
/// Sends data on the socket to the specified address.
///
/// On success, returns the number of bytes written.
pub fn poll_send_to<P>(&self, buf: &[u8], path: P) -> Poll<usize, io::Error>
where
P: AsRef<Path>,
{
try_ready!(self.io.poll_write_ready());
match self.io.get_ref().send_to(buf, path) {
Ok(ret) => Ok(ret.into()),
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready()?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
/// Sends data on the socket to the socket's peer.
///
/// The peer address may be set by the `connect` method, and this method
/// will return an error if the socket has not already been connected.
///
/// On success, returns the number of bytes written.
pub fn poll_send(&self, buf: &[u8]) -> Poll<usize, io::Error> {
try_ready!(self.io.poll_write_ready());
match self.io.get_ref().send(buf) {
Ok(ret) => Ok(ret.into()),
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready()?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
/// Returns a future sending the data in buf to the socket at path.
pub fn send_dgram<T, P>(self, buf: T, path: P) -> SendDgram<T, P>
where
T: AsRef<[u8]>,
P: AsRef<Path>,
{
SendDgram::new(self, buf, path)
}
/// Returns the value of the `SO_ERROR` option.
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.io.get_ref().take_error()

View File

@ -1,9 +1,14 @@
#![cfg(feature = "async-traits")]
use crate::{UnixListener, UnixStream};
use futures::{try_ready, Poll, Stream};
use futures_core::stream::Stream;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};
/// Stream of listeners
#[derive(Debug)]
#[must_use = "streams do nothing unless polled"]
pub struct Incoming {
inner: UnixListener,
}
@ -15,10 +20,10 @@ impl Incoming {
}
impl Stream for Incoming {
type Item = UnixStream;
type Error = io::Error;
type Item = io::Result<UnixStream>;
fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
Ok(Some(try_ready!(self.inner.poll_accept()).0).into())
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let (socket, _) = ready!(Pin::new(&mut self.inner).poll_accept(cx))?;
Poll::Ready(Some(Ok(socket)))
}
}

View File

@ -8,20 +8,34 @@
//!
//! This crate provides APIs for using Unix Domain Sockets with Tokio.
macro_rules! ready {
($e:expr) => {
match $e {
::std::task::Poll::Ready(t) => t,
::std::task::Poll::Pending => return ::std::task::Poll::Pending,
}
};
}
mod datagram;
mod frame;
// mod frame;
mod incoming;
mod listener;
mod recv_dgram;
mod send_dgram;
mod recv;
mod recv_from;
mod send;
mod send_to;
mod stream;
mod ucred;
pub use crate::datagram::UnixDatagram;
pub use crate::frame::UnixDatagramFramed;
pub use crate::recv::Recv;
pub use crate::recv_from::RecvFrom;
pub use crate::send::Send;
pub use crate::send_to::SendTo;
// pub use crate::frame::UnixDatagramFramed;
#[cfg(feature = "async-traits")]
pub use crate::incoming::Incoming;
pub use crate::listener::UnixListener;
pub use crate::recv_dgram::RecvDgram;
pub use crate::send_dgram::SendDgram;
pub use crate::listener::{Accept, UnixListener};
pub use crate::stream::{ConnectFuture, UnixStream};
pub use crate::ucred::UCred;

View File

@ -1,13 +1,15 @@
use crate::{Incoming, UnixStream};
use futures::{try_ready, Async, Poll};
use crate::UnixStream;
use mio::Ready;
use mio_uds;
use std::convert::TryFrom;
use std::fmt;
use std::future::Future;
use std::io;
use std::os::unix::io::{AsRawFd, RawFd};
use std::os::unix::net::{self, SocketAddr};
use std::path::Path;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio_reactor::{Handle, PollEvented};
/// A Unix socket which can accept connections from other Unix sockets.
@ -43,8 +45,8 @@ impl UnixListener {
}
/// Test whether this socket is ready to be read or not.
pub fn poll_read_ready(&self, ready: Ready) -> Poll<Ready, io::Error> {
self.io.poll_read_ready(ready)
pub fn poll_read_ready(&self, cx: &mut Context<'_>, ready: Ready) -> Poll<io::Result<Ready>> {
self.io.poll_read_ready(cx, ready)
}
/// Returns the value of the `SO_ERROR` option.
@ -52,6 +54,12 @@ impl UnixListener {
self.io.get_ref().take_error()
}
/// Returns a future that attempts to accept a connection and creates a new
/// connected `UnixStream` if successful.
pub fn accept(&mut self) -> Accept<'_> {
Accept { listener: self }
}
/// Attempt to accept a connection and create a new connected `UnixStream`
/// if successful.
///
@ -70,11 +78,14 @@ impl UnixListener {
/// This function will panic if it is called outside the context of a
/// future's task. It's recommended to only call this from the
/// implementation of a `Future::poll`, if necessary.
pub fn poll_accept(&self) -> Poll<(UnixStream, SocketAddr), io::Error> {
let (io, addr) = try_ready!(self.poll_accept_std());
pub fn poll_accept(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<io::Result<(UnixStream, SocketAddr)>> {
let (io, addr) = ready!(self.poll_accept_std(cx))?;
let io = mio_uds::UnixStream::from_stream(io)?;
Ok((UnixStream::new(io), addr).into())
Ok((UnixStream::new(io), addr)).into()
}
/// Attempt to accept a connection and create a new connected `UnixStream`
@ -100,24 +111,23 @@ impl UnixListener {
/// This function will panic if it is called outside the context of a
/// future's task. It's recommended to only call this from the
/// implementation of a `Future::poll`, if necessary.
pub fn poll_accept_std(&self) -> Poll<(net::UnixStream, SocketAddr), io::Error> {
loop {
try_ready!(self.io.poll_read_ready(Ready::readable()));
pub fn poll_accept_std(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<io::Result<(net::UnixStream, SocketAddr)>> {
ready!(self.io.poll_read_ready(cx, Ready::readable()))?;
match self.io.get_ref().accept_std() {
Ok(None) => {
self.io.clear_read_ready(Ready::readable())?;
return Ok(Async::NotReady);
}
Ok(Some((sock, addr))) => {
return Ok(Async::Ready((sock, addr)));
}
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(Ready::readable())?;
return Ok(Async::NotReady);
}
Err(err) => return Err(err),
match self.io.get_ref().accept_std() {
Ok(None) => {
self.io.clear_read_ready(cx, Ready::readable())?;
Poll::Pending
}
Ok(Some((sock, addr))) => Ok((sock, addr)).into(),
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(cx, Ready::readable())?;
Poll::Pending
}
Err(err) => Err(err).into(),
}
}
@ -126,8 +136,9 @@ impl UnixListener {
///
/// This method returns an implementation of the `Stream` trait which
/// resolves to the sockets the are accepted on this listener.
pub fn incoming(self) -> Incoming {
Incoming::new(self)
#[cfg(feature = "async-traits")]
pub fn incoming(self) -> crate::Incoming {
crate::Incoming::new(self)
}
}
@ -154,3 +165,18 @@ impl AsRawFd for UnixListener {
self.io.get_ref().as_raw_fd()
}
}
/// Future type returned by [`UnixListener::accept`].
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Accept<'a> {
listener: &'a mut UnixListener,
}
impl<'a> Future for Accept<'a> {
type Output = io::Result<(UnixStream, SocketAddr)>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut *self.listener).poll_accept(cx)
}
}

30
tokio-uds/src/recv.rs Normal file
View File

@ -0,0 +1,30 @@
use crate::UnixDatagram;
use std::future::Future;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A future that receives a datagram from the connected address.
///
/// This `struct` is created by [`recv`](crate::UnixDatagram::recv).
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Recv<'a, 'b> {
socket: &'a mut UnixDatagram,
buf: &'b mut [u8],
}
impl<'a, 'b> Recv<'a, 'b> {
pub(crate) fn new(socket: &'a mut UnixDatagram, buf: &'b mut [u8]) -> Self {
Self { socket, buf }
}
}
impl<'a, 'b> Future for Recv<'a, 'b> {
type Output = io::Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Recv { socket, buf } = self.get_mut();
socket.poll_recv_priv(cx, buf)
}
}

View File

@ -1,72 +0,0 @@
use crate::UnixDatagram;
use futures::{try_ready, Async, Future, Poll};
use std::io;
use std::mem;
/// A future for receiving datagrams from a Unix datagram socket.
///
/// An example that uses UDP sockets but is still applicable can be found at
/// https://gist.github.com/dermesser/e331094c2ab28fc7f6ba8a16183fe4d5.
#[derive(Debug)]
pub struct RecvDgram<T> {
st: State<T>,
}
/// A future similar to RecvDgram, but without allocating and returning the peer's address.
///
/// This can be used if the peer's address is of no interest, so the allocation overhead can be
/// avoided.
#[derive(Debug)]
enum State<T> {
Receiving { sock: UnixDatagram, buf: T },
Empty,
}
impl<T> RecvDgram<T>
where
T: AsMut<[u8]>,
{
pub(crate) fn new(sock: UnixDatagram, buf: T) -> RecvDgram<T> {
RecvDgram {
st: State::Receiving { sock, buf },
}
}
}
impl<T> Future for RecvDgram<T>
where
T: AsMut<[u8]>,
{
/// RecvDgram yields a tuple of the underlying socket, the receive buffer, how many bytes were
/// received, and the address (path) of the peer sending the datagram. If the buffer is too small, the
/// datagram is truncated.
type Item = (UnixDatagram, T, usize, String);
/// This future yields io::Error if an error occurred.
type Error = io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let received;
let peer;
if let State::Receiving {
ref mut sock,
ref mut buf,
} = self.st
{
let (n, p) = try_ready!(sock.poll_recv_from(buf.as_mut()));
received = n;
peer = p.as_pathname().map_or(String::new(), |p| {
p.to_str().map_or(String::new(), |s| s.to_string())
});
} else {
panic!()
}
if let State::Receiving { sock, buf } = mem::replace(&mut self.st, State::Empty) {
Ok(Async::Ready((sock, buf, received, peer)))
} else {
panic!()
}
}
}

View File

@ -0,0 +1,31 @@
use crate::UnixDatagram;
use std::future::Future;
use std::io;
use std::os::unix::net::SocketAddr;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A future that receives a datagram.
///
/// This `struct` is created by [`recv_from`](crate::UnixDatagram::recv_from).
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct RecvFrom<'a, 'b> {
socket: &'a UnixDatagram,
buf: &'b mut [u8],
}
impl<'a, 'b> RecvFrom<'a, 'b> {
pub(crate) fn new(socket: &'a UnixDatagram, buf: &'b mut [u8]) -> Self {
Self { socket, buf }
}
}
impl<'a, 'b> Future for RecvFrom<'a, 'b> {
type Output = io::Result<(usize, SocketAddr)>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let RecvFrom { socket, buf } = self.get_mut();
socket.poll_recv_from_priv(cx, buf)
}
}

30
tokio-uds/src/send.rs Normal file
View File

@ -0,0 +1,30 @@
use crate::UnixDatagram;
use std::future::Future;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A future that sends a datagram to the connected address.
///
/// This `struct` is created by [`send`](crate::UnixDatagram::send).
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Send<'a, 'b> {
socket: &'a UnixDatagram,
buf: &'b [u8],
}
impl<'a, 'b> Send<'a, 'b> {
pub(crate) fn new(socket: &'a UnixDatagram, buf: &'b [u8]) -> Self {
Self { socket, buf }
}
}
impl<'a, 'b> Future for Send<'a, 'b> {
type Output = io::Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Send { socket, buf } = self.get_mut();
socket.poll_send_priv(cx, buf)
}
}

View File

@ -1,73 +0,0 @@
use crate::UnixDatagram;
use futures::{try_ready, Async, Future, Poll};
use std::io;
use std::mem;
use std::path::Path;
/// A future for writing a buffer to a Unix datagram socket.
#[derive(Debug)]
pub struct SendDgram<T, P> {
st: State<T, P>,
}
#[derive(Debug)]
enum State<T, P> {
/// current state is Sending
Sending {
/// the underlying socket
sock: UnixDatagram,
/// the buffer to send
buf: T,
/// the destination
addr: P,
},
/// neutral state
Empty,
}
impl<T, P> SendDgram<T, P>
where
T: AsRef<[u8]>,
P: AsRef<Path>,
{
pub(crate) fn new(sock: UnixDatagram, buf: T, addr: P) -> SendDgram<T, P> {
SendDgram {
st: State::Sending { sock, buf, addr },
}
}
}
impl<T, P> Future for SendDgram<T, P>
where
T: AsRef<[u8]>,
P: AsRef<Path>,
{
/// Returns the underlying socket and the buffer that was sent.
type Item = (UnixDatagram, T);
/// The error that is returned when sending failed.
type Error = io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
if let State::Sending {
ref mut sock,
ref buf,
ref addr,
} = self.st
{
let n = try_ready!(sock.poll_send_to(buf.as_ref(), addr));
if n < buf.as_ref().len() {
return Err(io::Error::new(
io::ErrorKind::Other,
"Couldn't send whole buffer".to_string(),
));
}
} else {
panic!()
}
if let State::Sending { sock, buf, addr: _ } = mem::replace(&mut self.st, State::Empty) {
Ok(Async::Ready((sock, buf)))
} else {
panic!()
}
}
}

43
tokio-uds/src/send_to.rs Normal file
View File

@ -0,0 +1,43 @@
use crate::UnixDatagram;
use std::future::Future;
use std::io;
use std::path::Path;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A future that sends a datagram to a given address.
///
/// This `struct` is created by [`send_to`](crate::UnixDatagram::send_to).
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct SendTo<'a, 'b, P> {
socket: &'a UnixDatagram,
buf: &'b [u8],
target: P,
}
impl<'a, 'b, P> SendTo<'a, 'b, P> {
pub(crate) fn new(socket: &'a UnixDatagram, buf: &'b [u8], target: P) -> Self {
Self {
socket,
buf,
target,
}
}
}
impl<'a, 'b, P> Future for SendTo<'a, 'b, P>
where
P: AsRef<Path> + Unpin,
{
type Output = io::Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let SendTo {
socket,
buf,
target,
} = self.get_mut();
socket.poll_send_to_priv(cx, buf, target.as_ref())
}
}

View File

@ -1,17 +1,18 @@
use crate::ucred::{self, UCred};
use bytes::{Buf, BufMut};
use futures::{Async, Future, Poll};
use iovec::{self, IoVec};
use libc;
use iovec::IoVec;
use mio::Ready;
use mio_uds;
use std::convert::TryFrom;
use std::fmt;
use std::future::Future;
use std::io::{self, Read, Write};
use std::net::Shutdown;
use std::os::unix::io::{AsRawFd, RawFd};
use std::os::unix::net::{self, SocketAddr};
use std::path::Path;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio_io::{AsyncRead, AsyncWrite};
use tokio_reactor::{Handle, PollEvented};
@ -27,15 +28,9 @@ pub struct UnixStream {
/// Future returned by `UnixStream::connect` which will resolve to a
/// `UnixStream` when the stream is connected.
#[derive(Debug)]
#[must_use = "futures do nothing unless polled"]
pub struct ConnectFuture {
inner: State,
}
#[derive(Debug)]
enum State {
Waiting(UnixStream),
Error(io::Error),
Empty,
stream: Option<io::Result<UnixStream>>,
}
impl UnixStream {
@ -49,13 +44,7 @@ impl UnixStream {
P: AsRef<Path>,
{
let res = mio_uds::UnixStream::connect(path).map(UnixStream::new);
let inner = match res {
Ok(stream) => State::Waiting(stream),
Err(e) => State::Error(e),
};
ConnectFuture { inner }
ConnectFuture { stream: Some(res) }
}
/// Consumes a `UnixStream` in the standard library and returns a
@ -89,13 +78,13 @@ impl UnixStream {
}
/// Test whether this socket is ready to be read or not.
pub fn poll_read_ready(&self, ready: Ready) -> Poll<Ready, io::Error> {
self.io.poll_read_ready(ready)
pub fn poll_read_ready(&self, cx: &mut Context<'_>, ready: Ready) -> Poll<io::Result<Ready>> {
self.io.poll_read_ready(cx, ready)
}
/// Test whether this socket is ready to be written to or not.
pub fn poll_write_ready(&self) -> Poll<Ready, io::Error> {
self.io.poll_write_ready()
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<Ready>> {
self.io.poll_write_ready(cx)
}
/// Returns the socket address of the local half of this connection.
@ -140,109 +129,189 @@ impl TryFrom<UnixStream> for mio_uds::UnixStream {
}
}
impl Read for UnixStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.io.read(buf)
}
}
impl Write for UnixStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.io.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.io.flush()
}
}
impl AsyncRead for UnixStream {
unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
false
}
fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
<&UnixStream>::read_buf(&mut &*self, buf)
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
self.poll_read_priv(cx, buf)
}
fn poll_read_buf<B: BufMut>(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut B,
) -> Poll<io::Result<usize>> {
self.poll_read_buf_priv(cx, buf)
}
}
impl AsyncWrite for UnixStream {
fn shutdown(&mut self) -> Poll<(), io::Error> {
<&UnixStream>::shutdown(&mut &*self)
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.poll_write_priv(cx, buf)
}
fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
<&UnixStream>::write_buf(&mut &*self, buf)
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_write_buf<B: Buf>(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut B,
) -> Poll<io::Result<usize>> {
self.poll_write_buf_priv(cx, buf)
}
}
impl<'a> Read for &'a UnixStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(&self.io).read(buf)
}
}
impl UnixStream {
// == Poll IO functions that takes `&self` ==
//
// They are not public because (taken from the doc of `PollEvented`):
//
// While `PollEvented` is `Sync` (if the underlying I/O type is `Sync`), the
// caller must ensure that there are at most two tasks that use a
// `PollEvented` instance concurrently. One for reading and one for writing.
// While violating this requirement is "safe" from a Rust memory model point
// of view, it will result in unexpected behavior in the form of lost
// notifications and tasks hanging.
impl<'a> Write for &'a UnixStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(&self.io).write(buf)
}
pub(crate) fn poll_read_priv(
&self,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_read_ready(cx, mio::Ready::readable()))?;
fn flush(&mut self) -> io::Result<()> {
(&self.io).flush()
}
}
impl<'a> AsyncRead for &'a UnixStream {
unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
false
}
fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
if let Async::NotReady = <UnixStream>::poll_read_ready(self, Ready::readable())? {
return Ok(Async::NotReady);
}
unsafe {
let r = read_ready(buf, self.as_raw_fd());
if r == -1 {
let e = io::Error::last_os_error();
if e.kind() == io::ErrorKind::WouldBlock {
self.io.clear_read_ready(Ready::readable())?;
Ok(Async::NotReady)
} else {
Err(e)
}
} else {
let r = r as usize;
buf.advance_mut(r);
Ok(r.into())
match self.io.get_ref().read(buf) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(cx, mio::Ready::readable())?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
}
impl<'a> AsyncWrite for &'a UnixStream {
fn shutdown(&mut self) -> Poll<(), io::Error> {
Ok(().into())
}
pub(crate) fn poll_read_buf_priv<B: BufMut>(
&self,
cx: &mut Context<'_>,
buf: &mut B,
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_read_ready(cx, mio::Ready::readable()))?;
fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
if let Async::NotReady = <UnixStream>::poll_write_ready(self)? {
return Ok(Async::NotReady);
}
unsafe {
let r = write_ready(buf, self.as_raw_fd());
if r == -1 {
let e = io::Error::last_os_error();
if e.kind() == io::ErrorKind::WouldBlock {
self.io.clear_write_ready()?;
Ok(Async::NotReady)
} else {
Err(e)
let r = unsafe {
// The `IoVec` type can't have a 0-length size, so we create a bunch
// of dummy versions on the stack with 1 length which we'll quickly
// overwrite.
let b1: &mut [u8] = &mut [0];
let b2: &mut [u8] = &mut [0];
let b3: &mut [u8] = &mut [0];
let b4: &mut [u8] = &mut [0];
let b5: &mut [u8] = &mut [0];
let b6: &mut [u8] = &mut [0];
let b7: &mut [u8] = &mut [0];
let b8: &mut [u8] = &mut [0];
let b9: &mut [u8] = &mut [0];
let b10: &mut [u8] = &mut [0];
let b11: &mut [u8] = &mut [0];
let b12: &mut [u8] = &mut [0];
let b13: &mut [u8] = &mut [0];
let b14: &mut [u8] = &mut [0];
let b15: &mut [u8] = &mut [0];
let b16: &mut [u8] = &mut [0];
let mut bufs: [&mut IoVec; 16] = [
b1.into(),
b2.into(),
b3.into(),
b4.into(),
b5.into(),
b6.into(),
b7.into(),
b8.into(),
b9.into(),
b10.into(),
b11.into(),
b12.into(),
b13.into(),
b14.into(),
b15.into(),
b16.into(),
];
let n = buf.bytes_vec_mut(&mut bufs);
self.io.get_ref().read_bufs(&mut bufs[..n])
};
match r {
Ok(n) => {
unsafe {
buf.advance_mut(n);
}
} else {
let r = r as usize;
buf.advance(r);
Ok(r.into())
Poll::Ready(Ok(n))
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(cx, mio::Ready::readable())?;
Poll::Pending
}
Err(e) => Poll::Ready(Err(e)),
}
}
pub(crate) fn poll_write_priv(
&self,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_write_ready(cx))?;
match self.io.get_ref().write(buf) {
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready(cx)?;
Poll::Pending
}
x => Poll::Ready(x),
}
}
pub(crate) fn poll_write_buf_priv<B: Buf>(
&self,
cx: &mut Context<'_>,
buf: &mut B,
) -> Poll<io::Result<usize>> {
ready!(self.io.poll_write_ready(cx))?;
let r = {
// The `IoVec` type can't have a zero-length size, so create a dummy
// version from a 1-length slice which we'll overwrite with the
// `bytes_vec` method.
static DUMMY: &[u8] = &[0];
let iovec = <&IoVec>::from(DUMMY);
let mut bufs = [iovec; 64];
let n = buf.bytes_vec(&mut bufs);
self.io.get_ref().write_bufs(&bufs[..n])
};
match r {
Ok(n) => {
buf.advance(n);
Poll::Ready(Ok(n))
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready(cx)?;
Poll::Pending
}
Err(e) => Poll::Ready(Err(e)),
}
}
}
@ -260,106 +329,27 @@ impl AsRawFd for UnixStream {
}
impl Future for ConnectFuture {
type Item = UnixStream;
type Error = io::Error;
type Output = io::Result<UnixStream>;
fn poll(&mut self) -> Poll<UnixStream, io::Error> {
use std::mem;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let stream = self
.stream
.take()
.expect("ConnectFuture polled after completion")?;
match self.inner {
State::Waiting(ref mut stream) => {
if let Async::NotReady = stream.io.poll_write_ready()? {
return Ok(Async::NotReady);
}
if let Some(e) = stream.io.get_ref().take_error()? {
return Err(e);
}
match stream.io.poll_write_ready(cx) {
Poll::Pending => {
self.stream = Some(Ok(stream));
return Poll::Pending;
}
State::Error(_) => {
let e = match mem::replace(&mut self.inner, State::Empty) {
State::Error(e) => e,
_ => unreachable!(),
};
return Err(e);
}
State::Empty => panic!("can't poll stream twice"),
Poll::Ready(Err(e)) => return Err(e).into(),
_ => (),
}
match mem::replace(&mut self.inner, State::Empty) {
State::Waiting(stream) => Ok(Async::Ready(stream)),
_ => unreachable!(),
if let Some(e) = stream.io.get_ref().take_error()? {
return Err(e).into();
}
Ok(stream).into()
}
}
unsafe fn read_ready<B: BufMut>(buf: &mut B, raw_fd: RawFd) -> isize {
// The `IoVec` type can't have a 0-length size, so we create a bunch
// of dummy versions on the stack with 1 length which we'll quickly
// overwrite.
let b1: &mut [u8] = &mut [0];
let b2: &mut [u8] = &mut [0];
let b3: &mut [u8] = &mut [0];
let b4: &mut [u8] = &mut [0];
let b5: &mut [u8] = &mut [0];
let b6: &mut [u8] = &mut [0];
let b7: &mut [u8] = &mut [0];
let b8: &mut [u8] = &mut [0];
let b9: &mut [u8] = &mut [0];
let b10: &mut [u8] = &mut [0];
let b11: &mut [u8] = &mut [0];
let b12: &mut [u8] = &mut [0];
let b13: &mut [u8] = &mut [0];
let b14: &mut [u8] = &mut [0];
let b15: &mut [u8] = &mut [0];
let b16: &mut [u8] = &mut [0];
let mut bufs: [&mut IoVec; 16] = [
b1.into(),
b2.into(),
b3.into(),
b4.into(),
b5.into(),
b6.into(),
b7.into(),
b8.into(),
b9.into(),
b10.into(),
b11.into(),
b12.into(),
b13.into(),
b14.into(),
b15.into(),
b16.into(),
];
let n = buf.bytes_vec_mut(&mut bufs);
read_ready_vecs(&mut bufs[..n], raw_fd)
}
unsafe fn read_ready_vecs(bufs: &mut [&mut IoVec], raw_fd: RawFd) -> isize {
let iovecs = iovec::unix::as_os_slice_mut(bufs);
libc::readv(raw_fd, iovecs.as_ptr(), iovecs.len() as i32)
}
unsafe fn write_ready<B: Buf>(buf: &mut B, raw_fd: RawFd) -> isize {
// The `IoVec` type can't have a zero-length size, so create a dummy
// version from a 1-length slice which we'll overwrite with the
// `bytes_vec` method.
static DUMMY: &[u8] = &[0];
let iovec = <&IoVec>::from(DUMMY);
let mut bufs = [
iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec, iovec,
iovec, iovec, iovec,
];
let n = buf.bytes_vec(&mut bufs);
write_ready_vecs(&bufs[..n], raw_fd)
}
unsafe fn write_ready_vecs(bufs: &[&IoVec], raw_fd: RawFd) -> isize {
let iovecs = iovec::unix::as_os_slice(bufs);
libc::writev(raw_fd, iovecs.as_ptr(), iovecs.len() as i32)
}

View File

@ -1,78 +1,70 @@
#![cfg(unix)]
#![feature(async_await)]
#![deny(warnings, rust_2018_idioms)]
use bytes::BytesMut;
use futures::{Future, Sink, Stream};
use std::str;
use std::io;
use tempfile;
use tokio::io;
use tokio::runtime::current_thread::Runtime;
use tokio_codec::{Decoder, Encoder};
use tokio_uds::*;
struct StringDatagramCodec;
// struct StringDatagramCodec;
/// A codec to decode datagrams from a unix domain socket as utf-8 text messages.
impl Encoder for StringDatagramCodec {
type Item = String;
type Error = io::Error;
// /// A codec to decode datagrams from a unix domain socket as utf-8 text messages.
// impl Encoder for StringDatagramCodec {
// type Item = String;
// type Error = io::Error;
fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
dst.extend_from_slice(&item.into_bytes());
Ok(())
// fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
// dst.extend_from_slice(&item.into_bytes());
// Ok(())
// }
// }
// /// A codec to decode datagrams from a unix domain socket as utf-8 text messages.
// impl Decoder for StringDatagramCodec {
// type Item = String;
// type Error = io::Error;
// fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
// let decoded = str::from_utf8(buf)
// .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?
// .to_string();
// Ok(Some(decoded))
// }
// }
async fn echo_server(mut socket: UnixDatagram) -> io::Result<()> {
let mut recv_buf = vec![0u8; 1024];
loop {
let (len, peer_addr) = socket.recv_from(&mut recv_buf[..]).await?;
if let Some(path) = peer_addr.as_pathname() {
socket.send_to(&recv_buf[..len], path).await?;
}
}
}
/// A codec to decode datagrams from a unix domain socket as utf-8 text messages.
impl Decoder for StringDatagramCodec {
type Item = String;
type Error = io::Error;
fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
let decoded = str::from_utf8(buf)
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?
.to_string();
Ok(Some(decoded))
}
}
#[test]
fn framed_echo() {
#[tokio::test]
async fn echo() -> io::Result<()> {
let dir = tempfile::tempdir().unwrap();
let server_path = dir.path().join("server.sock");
let client_path = dir.path().join("client.sock");
let mut rt = Runtime::new().unwrap();
let server_socket = UnixDatagram::bind(server_path.clone())?;
tokio::spawn(async move {
if let Err(e) = echo_server(server_socket).await {
eprintln!("Error in echo server: {}", e);
}
});
{
let socket = UnixDatagram::bind(&server_path).unwrap();
let server = UnixDatagramFramed::new(socket, StringDatagramCodec);
let (sink, stream) = server.split();
let echo_stream =
stream.map(|(msg, addr)| (msg, addr.as_pathname().unwrap().to_path_buf()));
// spawn echo server
rt.spawn(
echo_stream
.forward(sink)
.map_err(|e| panic!("err={:?}", e))
.map(|_| ()),
);
let mut socket = UnixDatagram::bind(&client_path).unwrap();
socket.connect(server_path)?;
socket.send(b"ECHO").await?;
let mut recv_buf = [0u8; 16];
let len = socket.recv(&mut recv_buf[..]).await?;
assert_eq!(&recv_buf[..len], b"ECHO");
}
{
let socket = UnixDatagram::bind(&client_path).unwrap();
let client = UnixDatagramFramed::new(socket, StringDatagramCodec);
let (sink, stream) = client.split();
rt.block_on(sink.send(("ECHO".to_string(), server_path)))
.unwrap();
let response = rt.block_on(stream.take(1).collect()).unwrap();
assert_eq!(response[0].0, "ECHO");
}
Ok(())
}

View File

@ -1,51 +1,32 @@
#![cfg(unix)]
#![feature(async_await)]
#![deny(warnings, rust_2018_idioms)]
use futures::sync::oneshot;
use futures::{Future, Stream};
use futures::future::try_join;
use tempfile::Builder;
use tokio::io;
use tokio::runtime::current_thread::Runtime;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio_uds::*;
macro_rules! t {
($e:expr) => {
match $e {
Ok(e) => e,
Err(e) => panic!("{} failed with {:?}", stringify!($e), e),
}
};
}
#[test]
fn echo() {
#[tokio::test]
async fn accept_read_write() -> std::io::Result<()> {
let dir = Builder::new().prefix("tokio-uds-tests").tempdir().unwrap();
let sock_path = dir.path().join("connect.sock");
let mut rt = Runtime::new().unwrap();
let mut listener = UnixListener::bind(&sock_path)?;
let server = t!(UnixListener::bind(&sock_path));
let (tx, rx) = oneshot::channel();
let accept = listener.accept();
let connect = UnixStream::connect(&sock_path);
let ((mut server, _), mut client) = try_join(accept, connect).await?;
rt.spawn({
server
.incoming()
.into_future()
.and_then(move |(sock, _)| {
tx.send(sock.unwrap()).unwrap();
Ok(())
})
.map_err(|e| panic!("err={:?}", e))
});
let client = rt.block_on(UnixStream::connect(&sock_path)).unwrap();
let server = rt.block_on(rx).unwrap();
// Write to the client
rt.block_on(io::write_all(client, b"hello")).unwrap();
// Read from the server
let (_, buf) = rt.block_on(io::read_to_end(server, vec![])).unwrap();
assert_eq!(buf, b"hello");
// Write to the client. TODO: Switch to write_all.
let write_len = client.write(b"hello").await?;
assert_eq!(write_len, 5);
drop(client);
// Read from the server. TODO: Switch to read_to_end.
let mut buf = [0u8; 5];
server.read_exact(&mut buf).await?;
assert_eq!(&buf, b"hello");
let len = server.read(&mut buf).await?;
assert_eq!(len, 0);
Ok(())
}