time: avoid traversing entries in the time wheel twice (#6584)

This commit is contained in:
Weijia Jiang 2024-06-14 17:03:47 +08:00 committed by GitHub
parent 53ea44bfb9
commit 8480a180e6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 181 additions and 186 deletions

View File

@ -21,9 +21,8 @@
//!
//! Each timer has a state field associated with it. This field contains either
//! the current scheduled time, or a special flag value indicating its state.
//! This state can either indicate that the timer is on the 'pending' queue (and
//! thus will be fired with an `Ok(())` result soon) or that it has already been
//! fired/deregistered.
//! This state can either indicate that the timer is firing (and thus will be fired
//! with an `Ok(())` result soon) or that it has already been fired/deregistered.
//!
//! This single state field allows for code that is firing the timer to
//! synchronize with any racing `reset` calls reliably.
@ -49,10 +48,10 @@
//! There is of course a race condition between timer reset and timer
//! expiration. If the driver fails to observe the updated expiration time, it
//! could trigger expiration of the timer too early. However, because
//! [`mark_pending`][mark_pending] performs a compare-and-swap, it will identify this race and
//! refuse to mark the timer as pending.
//! [`mark_firing`][mark_firing] performs a compare-and-swap, it will identify this race and
//! refuse to mark the timer as firing.
//!
//! [mark_pending]: TimerHandle::mark_pending
//! [mark_firing]: TimerHandle::mark_firing
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::AtomicU64;
@ -70,9 +69,9 @@ use std::{marker::PhantomPinned, pin::Pin, ptr::NonNull};
type TimerResult = Result<(), crate::time::error::Error>;
const STATE_DEREGISTERED: u64 = u64::MAX;
const STATE_PENDING_FIRE: u64 = STATE_DEREGISTERED - 1;
const STATE_MIN_VALUE: u64 = STATE_PENDING_FIRE;
pub(super) const STATE_DEREGISTERED: u64 = u64::MAX;
const STATE_FIRING: u64 = STATE_DEREGISTERED - 1;
const STATE_MIN_VALUE: u64 = STATE_FIRING;
/// The largest safe integer to use for ticks.
///
/// This value should be updated if any other signal values are added above.
@ -123,10 +122,6 @@ impl StateCell {
}
}
fn is_pending(&self) -> bool {
self.state.load(Ordering::Relaxed) == STATE_PENDING_FIRE
}
/// Returns the current expiration time, or None if not currently scheduled.
fn when(&self) -> Option<u64> {
let cur_state = self.state.load(Ordering::Relaxed);
@ -162,26 +157,28 @@ impl StateCell {
}
}
/// Marks this timer as being moved to the pending list, if its scheduled
/// time is not after `not_after`.
/// Marks this timer firing, if its scheduled time is not after `not_after`.
///
/// If the timer is scheduled for a time after `not_after`, returns an Err
/// containing the current scheduled time.
///
/// SAFETY: Must hold the driver lock.
unsafe fn mark_pending(&self, not_after: u64) -> Result<(), u64> {
unsafe fn mark_firing(&self, not_after: u64) -> Result<(), u64> {
// Quick initial debug check to see if the timer is already fired. Since
// firing the timer can only happen with the driver lock held, we know
// we shouldn't be able to "miss" a transition to a fired state, even
// with relaxed ordering.
let mut cur_state = self.state.load(Ordering::Relaxed);
loop {
// Because its state is STATE_DEREGISTERED, it has been fired.
if cur_state == STATE_DEREGISTERED {
break Err(cur_state);
}
// improve the error message for things like
// https://github.com/tokio-rs/tokio/issues/3675
assert!(
cur_state < STATE_MIN_VALUE,
"mark_pending called when the timer entry is in an invalid state"
"mark_firing called when the timer entry is in an invalid state"
);
if cur_state > not_after {
@ -190,7 +187,7 @@ impl StateCell {
match self.state.compare_exchange_weak(
cur_state,
STATE_PENDING_FIRE,
STATE_FIRING,
Ordering::AcqRel,
Ordering::Acquire,
) {
@ -337,11 +334,6 @@ pub(crate) struct TimerShared {
/// Only accessed under the entry lock.
pointers: linked_list::Pointers<TimerShared>,
/// The expiration time for which this entry is currently registered.
/// Generally owned by the driver, but is accessed by the entry when not
/// registered.
cached_when: AtomicU64,
/// Current state. This records whether the timer entry is currently under
/// the ownership of the driver, and if not, its current state (not
/// complete, fired, error, etc).
@ -356,7 +348,6 @@ unsafe impl Sync for TimerShared {}
impl std::fmt::Debug for TimerShared {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TimerShared")
.field("cached_when", &self.cached_when.load(Ordering::Relaxed))
.field("state", &self.state)
.finish()
}
@ -374,40 +365,12 @@ impl TimerShared {
pub(super) fn new(shard_id: u32) -> Self {
Self {
shard_id,
cached_when: AtomicU64::new(0),
pointers: linked_list::Pointers::new(),
state: StateCell::default(),
_p: PhantomPinned,
}
}
/// Gets the cached time-of-expiration value.
pub(super) fn cached_when(&self) -> u64 {
// Cached-when is only accessed under the driver lock, so we can use relaxed
self.cached_when.load(Ordering::Relaxed)
}
/// Gets the true time-of-expiration value, and copies it into the cached
/// time-of-expiration value.
///
/// SAFETY: Must be called with the driver lock held, and when this entry is
/// not in any timer wheel lists.
pub(super) unsafe fn sync_when(&self) -> u64 {
let true_when = self.true_when();
self.cached_when.store(true_when, Ordering::Relaxed);
true_when
}
/// Sets the cached time-of-expiration value.
///
/// SAFETY: Must be called with the driver lock held, and when this entry is
/// not in any timer wheel lists.
unsafe fn set_cached_when(&self, when: u64) {
self.cached_when.store(when, Ordering::Relaxed);
}
/// Returns the true time-of-expiration value, with relaxed memory ordering.
pub(super) fn true_when(&self) -> u64 {
self.state.when().expect("Timer already fired")
@ -420,7 +383,6 @@ impl TimerShared {
/// in the timer wheel.
pub(super) unsafe fn set_expiration(&self, t: u64) {
self.state.set_expiration(t);
self.cached_when.store(t, Ordering::Relaxed);
}
/// Sets the true time-of-expiration only if it is after the current.
@ -590,16 +552,8 @@ impl TimerEntry {
}
impl TimerHandle {
pub(super) unsafe fn cached_when(&self) -> u64 {
unsafe { self.inner.as_ref().cached_when() }
}
pub(super) unsafe fn sync_when(&self) -> u64 {
unsafe { self.inner.as_ref().sync_when() }
}
pub(super) unsafe fn is_pending(&self) -> bool {
unsafe { self.inner.as_ref().state.is_pending() }
pub(super) unsafe fn true_when(&self) -> u64 {
unsafe { self.inner.as_ref().true_when() }
}
/// Forcibly sets the true and cached expiration times to the given tick.
@ -610,7 +564,7 @@ impl TimerHandle {
self.inner.as_ref().set_expiration(tick);
}
/// Attempts to mark this entry as pending. If the expiration time is after
/// Attempts to mark this entry as firing. If the expiration time is after
/// `not_after`, however, returns an Err with the current expiration time.
///
/// If an `Err` is returned, the `cached_when` value will be updated to this
@ -618,19 +572,8 @@ impl TimerHandle {
///
/// SAFETY: The caller must ensure that the handle remains valid, the driver
/// lock is held, and that the timer is not in any wheel linked lists.
/// After returning Ok, the entry must be added to the pending list.
pub(super) unsafe fn mark_pending(&self, not_after: u64) -> Result<(), u64> {
match self.inner.as_ref().state.mark_pending(not_after) {
Ok(()) => {
// mark this as being on the pending queue in cached_when
self.inner.as_ref().set_cached_when(u64::MAX);
Ok(())
}
Err(tick) => {
self.inner.as_ref().set_cached_when(tick);
Err(tick)
}
}
pub(super) unsafe fn mark_firing(&self, not_after: u64) -> Result<(), u64> {
self.inner.as_ref().state.mark_firing(not_after)
}
/// Attempts to transition to a terminal state. If the state is already a

View File

@ -8,7 +8,7 @@
mod entry;
pub(crate) use entry::TimerEntry;
use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};
use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION, STATE_DEREGISTERED};
mod handle;
pub(crate) use self::handle::Handle;
@ -319,23 +319,53 @@ impl Handle {
now = lock.elapsed();
}
while let Some(entry) = lock.poll(now) {
debug_assert!(unsafe { entry.is_pending() });
while let Some(expiration) = lock.poll(now) {
lock.set_elapsed(expiration.deadline);
// It is critical for `GuardedLinkedList` safety that the guard node is
// pinned in memory and is not dropped until the guarded list is dropped.
let guard = TimerShared::new(id);
pin!(guard);
let guard_handle = guard.as_ref().get_ref().handle();
// SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
if let Some(waker) = unsafe { entry.fire(Ok(())) } {
waker_list.push(waker);
// * This list will be still guarded by the lock of the Wheel with the specefied id.
// `EntryWaitersList` wrapper makes sure we hold the lock to modify it.
// * This wrapper will empty the list on drop. It is critical for safety
// that we will not leave any list entry with a pointer to the local
// guard node after this function returns / panics.
// Safety: The `TimerShared` inside this `TimerHandle` is pinned in the memory.
let mut list = unsafe { lock.get_waiters_list(&expiration, guard_handle, id, self) };
if !waker_list.can_push() {
// Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
drop(lock);
while let Some(entry) = list.pop_back_locked(&mut lock) {
let deadline = expiration.deadline;
// Try to expire the entry; this is cheap (doesn't synchronize) if
// the timer is not expired, and updates cached_when.
match unsafe { entry.mark_firing(deadline) } {
Ok(()) => {
// Entry was expired.
// SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
if let Some(waker) = unsafe { entry.fire(Ok(())) } {
waker_list.push(waker);
waker_list.wake_all();
if !waker_list.can_push() {
// Wake a batch of wakers. To avoid deadlock,
// we must do this with the lock temporarily dropped.
drop(lock);
waker_list.wake_all();
lock = self.inner.lock_sharded_wheel(id);
lock = self.inner.lock_sharded_wheel(id);
}
}
}
Err(state) if state == STATE_DEREGISTERED => {}
Err(state) => {
// Safety: This Entry has not expired.
unsafe { lock.reinsert_entry(entry, deadline, state) };
}
}
}
lock.occupied_bit_maintain(&expiration);
}
let next_wake_up = lock.poll_at();
drop(lock);

View File

@ -20,7 +20,6 @@ pub(crate) struct Level {
}
/// Indicates when a slot must be processed next.
#[derive(Debug)]
pub(crate) struct Expiration {
/// The level containing the slot.
pub(crate) level: usize,
@ -81,7 +80,7 @@ impl Level {
// pseudo-ring buffer, and we rotate around them indefinitely. If we
// compute a deadline before now, and it's the top level, it
// therefore means we're actually looking at a slot in the future.
debug_assert_eq!(self.level, super::NUM_LEVELS - 1);
debug_assert_eq!(self.level, super::MAX_LEVEL_INDEX);
deadline += level_range;
}
@ -120,7 +119,7 @@ impl Level {
}
pub(crate) unsafe fn add_entry(&mut self, item: TimerHandle) {
let slot = slot_for(item.cached_when(), self.level);
let slot = slot_for(item.true_when(), self.level);
self.slot[slot].push_front(item);
@ -128,23 +127,26 @@ impl Level {
}
pub(crate) unsafe fn remove_entry(&mut self, item: NonNull<TimerShared>) {
let slot = slot_for(unsafe { item.as_ref().cached_when() }, self.level);
let slot = slot_for(unsafe { item.as_ref().true_when() }, self.level);
unsafe { self.slot[slot].remove(item) };
if self.slot[slot].is_empty() {
// The bit is currently set
debug_assert!(self.occupied & occupied_bit(slot) != 0);
// Unset the bit
self.occupied ^= occupied_bit(slot);
}
}
pub(crate) fn take_slot(&mut self, slot: usize) -> EntryList {
self.occupied &= !occupied_bit(slot);
pub(super) fn take_slot(&mut self, slot: usize) -> EntryList {
std::mem::take(&mut self.slot[slot])
}
pub(super) fn occupied_bit_maintain(&mut self, slot: usize) {
if self.slot[slot].is_empty() {
self.occupied &= !occupied_bit(slot);
} else {
self.occupied |= occupied_bit(slot);
}
}
}
impl fmt::Debug for Level {

View File

@ -1,5 +1,6 @@
use crate::runtime::time::{TimerHandle, TimerShared};
use crate::time::error::InsertError;
use crate::util::linked_list::{self, GuardedLinkedList, LinkedList};
mod level;
pub(crate) use self::level::Expiration;
@ -7,7 +8,59 @@ use self::level::Level;
use std::{array, ptr::NonNull};
use super::EntryList;
use super::entry::MAX_SAFE_MILLIS_DURATION;
use super::Handle;
/// List used in `Handle::process_at_sharded_time`. It wraps a guarded linked list
/// and gates the access to it on the lock of the `Wheel` with the specified `wheel_id`.
/// It also empties the list on drop.
pub(super) struct EntryWaitersList<'a> {
// GuardedLinkedList ensures that the concurrent drop of Entry in this slot is safe.
list: GuardedLinkedList<TimerShared, <TimerShared as linked_list::Link>::Target>,
is_empty: bool,
wheel_id: u32,
handle: &'a Handle,
}
impl<'a> Drop for EntryWaitersList<'a> {
fn drop(&mut self) {
// If the list is not empty, we unlink all waiters from it.
// We do not wake the waiters to avoid double panics.
if !self.is_empty {
let _lock = self.handle.inner.lock_sharded_wheel(self.wheel_id);
while self.list.pop_back().is_some() {}
}
}
}
impl<'a> EntryWaitersList<'a> {
fn new(
unguarded_list: LinkedList<TimerShared, <TimerShared as linked_list::Link>::Target>,
guard_handle: TimerHandle,
wheel_id: u32,
handle: &'a Handle,
) -> Self {
let list = unguarded_list.into_guarded(guard_handle);
Self {
list,
is_empty: false,
wheel_id,
handle,
}
}
/// Removes the last element from the guarded list. Modifying this list
/// requires an exclusive access to the Wheel with the specified `wheel_id`.
pub(super) fn pop_back_locked(&mut self, _wheel: &mut Wheel) -> Option<TimerHandle> {
let result = self.list.pop_back();
if result.is_none() {
// Save information about emptiness to avoid waiting for lock
// in the destructor.
self.is_empty = true;
}
result
}
}
/// Timing wheel implementation.
///
@ -36,9 +89,6 @@ pub(crate) struct Wheel {
/// * ~ 4 hr slots / ~ 12 day range
/// * ~ 12 day slots / ~ 2 yr range
levels: Box<[Level; NUM_LEVELS]>,
/// Entries queued for firing
pending: EntryList,
}
/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
@ -46,6 +96,9 @@ pub(crate) struct Wheel {
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;
/// The max level index.
pub(super) const MAX_LEVEL_INDEX: usize = NUM_LEVELS - 1;
/// The maximum duration of a `Sleep`.
pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
@ -55,7 +108,6 @@ impl Wheel {
Wheel {
elapsed: 0,
levels: Box::new(array::from_fn(Level::new)),
pending: EntryList::new(),
}
}
@ -90,7 +142,7 @@ impl Wheel {
&mut self,
item: TimerHandle,
) -> Result<u64, (TimerHandle, InsertError)> {
let when = item.sync_when();
let when = item.true_when();
if when <= self.elapsed {
return Err((item, InsertError::Elapsed));
@ -99,9 +151,7 @@ impl Wheel {
// Get the level at which the entry should be stored
let level = self.level_for(when);
unsafe {
self.levels[level].add_entry(item);
}
unsafe { self.levels[level].add_entry(item) };
debug_assert!({
self.levels[level]
@ -116,10 +166,8 @@ impl Wheel {
/// Removes `item` from the timing wheel.
pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) {
unsafe {
let when = item.as_ref().cached_when();
if when == u64::MAX {
self.pending.remove(item);
} else {
let when = item.as_ref().true_when();
if when <= MAX_SAFE_MILLIS_DURATION {
debug_assert!(
self.elapsed <= when,
"elapsed={}; when={}",
@ -128,54 +176,42 @@ impl Wheel {
);
let level = self.level_for(when);
// If the entry is not contained in the `slot` list,
// then it is contained by a guarded list.
self.levels[level].remove_entry(item);
}
}
}
/// Reinserts `item` to the timing wheel.
/// Safety: This entry must not have expired.
pub(super) unsafe fn reinsert_entry(&mut self, entry: TimerHandle, elapsed: u64, when: u64) {
let level = level_for(elapsed, when);
unsafe { self.levels[level].add_entry(entry) };
}
/// Instant at which to poll.
pub(crate) fn poll_at(&self) -> Option<u64> {
self.next_expiration().map(|expiration| expiration.deadline)
}
/// Advances the timer up to the instant represented by `now`.
pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> {
loop {
if let Some(handle) = self.pending.pop_back() {
return Some(handle);
}
match self.next_expiration() {
Some(ref expiration) if expiration.deadline <= now => {
self.process_expiration(expiration);
self.set_elapsed(expiration.deadline);
}
_ => {
// in this case the poll did not indicate an expiration
// _and_ we were not able to find a next expiration in
// the current list of timers. advance to the poll's
// current time and do nothing else.
self.set_elapsed(now);
break;
}
pub(crate) fn poll(&mut self, now: u64) -> Option<Expiration> {
match self.next_expiration() {
Some(expiration) if expiration.deadline <= now => Some(expiration),
_ => {
// in this case the poll did not indicate an expiration
// _and_ we were not able to find a next expiration in
// the current list of timers. advance to the poll's
// current time and do nothing else.
self.set_elapsed(now);
None
}
}
self.pending.pop_back()
}
/// Returns the instant at which the next timeout expires.
fn next_expiration(&self) -> Option<Expiration> {
if !self.pending.is_empty() {
// Expire immediately as we have things pending firing
return Some(Expiration {
level: 0,
slot: 0,
deadline: self.elapsed,
});
}
// Check all levels
for (level_num, level) in self.levels.iter().enumerate() {
if let Some(expiration) = level.next_expiration(self.elapsed) {
@ -211,46 +247,7 @@ impl Wheel {
res
}
/// iteratively find entries that are between the wheel's current
/// time and the expiration time. for each in that population either
/// queue it for notification (in the case of the last level) or tier
/// it down to the next level (in all other cases).
pub(crate) fn process_expiration(&mut self, expiration: &Expiration) {
// Note that we need to take _all_ of the entries off the list before
// processing any of them. This is important because it's possible that
// those entries might need to be reinserted into the same slot.
//
// This happens only on the highest level, when an entry is inserted
// more than MAX_DURATION into the future. When this happens, we wrap
// around, and process some entries a multiple of MAX_DURATION before
// they actually need to be dropped down a level. We then reinsert them
// back into the same position; we must make sure we don't then process
// those entries again or we'll end up in an infinite loop.
let mut entries = self.take_entries(expiration);
while let Some(item) = entries.pop_back() {
if expiration.level == 0 {
debug_assert_eq!(unsafe { item.cached_when() }, expiration.deadline);
}
// Try to expire the entry; this is cheap (doesn't synchronize) if
// the timer is not expired, and updates cached_when.
match unsafe { item.mark_pending(expiration.deadline) } {
Ok(()) => {
// Item was expired
self.pending.push_front(item);
}
Err(expiration_tick) => {
let level = level_for(expiration.deadline, expiration_tick);
unsafe {
self.levels[level].add_entry(item);
}
}
}
}
}
fn set_elapsed(&mut self, when: u64) {
pub(super) fn set_elapsed(&mut self, when: u64) {
assert!(
self.elapsed <= when,
"elapsed={:?}; when={:?}",
@ -263,9 +260,31 @@ impl Wheel {
}
}
/// Obtains the list of entries that need processing for the given expiration.
fn take_entries(&mut self, expiration: &Expiration) -> EntryList {
self.levels[expiration.level].take_slot(expiration.slot)
/// Obtains the guarded list of entries that need processing for the given expiration.
/// Safety: The `TimerShared` inside `guard_handle` must be pinned in the memory.
pub(super) unsafe fn get_waiters_list<'a>(
&mut self,
expiration: &Expiration,
guard_handle: TimerHandle,
wheel_id: u32,
handle: &'a Handle,
) -> EntryWaitersList<'a> {
// Note that we need to take _all_ of the entries off the list before
// processing any of them. This is important because it's possible that
// those entries might need to be reinserted into the same slot.
//
// This happens only on the highest level, when an entry is inserted
// more than MAX_DURATION into the future. When this happens, we wrap
// around, and process some entries a multiple of MAX_DURATION before
// they actually need to be dropped down a level. We then reinsert them
// back into the same position; we must make sure we don't then process
// those entries again or we'll end up in an infinite loop.
let unguarded_list = self.levels[expiration.level].take_slot(expiration.slot);
EntryWaitersList::new(unguarded_list, guard_handle, wheel_id, handle)
}
pub(super) fn occupied_bit_maintain(&mut self, expiration: &Expiration) {
self.levels[expiration.level].occupied_bit_maintain(expiration.slot);
}
fn level_for(&self, when: u64) -> usize {

View File

@ -334,6 +334,7 @@ feature! {
feature = "sync",
feature = "rt",
feature = "signal",
feature = "time",
)]
/// An intrusive linked list, but instead of keeping pointers to the head