io: add POSIX AIO on FreeBSD (#4054)

This commit is contained in:
Alan Somers 2021-09-15 10:55:50 -06:00 committed by GitHub
parent 57563e218b
commit 8b298d9ed4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 629 additions and 2 deletions

View File

@ -131,6 +131,9 @@ tempfile = "3.1.0"
async-stream = "0.3"
socket2 = "0.4"
[target.'cfg(target_os = "freebsd")'.dev-dependencies]
mio-aio = { git = "https://github.com/asomers/mio-aio", rev = "2f56696", features = ["tokio"] }
[target.'cfg(loom)'.dev-dependencies]
loom = { version = "0.5", features = ["futures", "checkpoint"] }

View File

@ -0,0 +1,195 @@
//! Use POSIX AIO futures with Tokio
use crate::io::driver::{Handle, Interest, ReadyEvent, Registration};
use mio::event::Source;
use mio::Registry;
use mio::Token;
use std::fmt;
use std::io;
use std::ops::{Deref, DerefMut};
use std::os::unix::io::AsRawFd;
use std::os::unix::prelude::RawFd;
use std::task::{Context, Poll};
/// Like [`mio::event::Source`], but for POSIX AIO only.
///
/// Tokio's consumer must pass an implementor of this trait to create a
/// [`Aio`] object.
pub trait AioSource {
/// Register this AIO event source with Tokio's reactor
fn register(&mut self, kq: RawFd, token: usize);
/// Deregister this AIO event source with Tokio's reactor
fn deregister(&mut self);
}
/// Wrap the user's AioSource in order to implement mio::event::Source, which
/// is what the rest of the crate wants.
struct MioSource<T>(T);
impl<T: AioSource> Source for MioSource<T> {
fn register(
&mut self,
registry: &Registry,
token: Token,
interests: mio::Interest,
) -> io::Result<()> {
assert!(interests.is_aio() || interests.is_lio());
self.0.register(registry.as_raw_fd(), usize::from(token));
Ok(())
}
fn deregister(&mut self, _registry: &Registry) -> io::Result<()> {
self.0.deregister();
Ok(())
}
fn reregister(
&mut self,
registry: &Registry,
token: Token,
interests: mio::Interest,
) -> io::Result<()> {
assert!(interests.is_aio() || interests.is_lio());
self.0.register(registry.as_raw_fd(), usize::from(token));
Ok(())
}
}
/// Associates a POSIX AIO control block with the reactor that drives it.
///
/// `Aio`'s wrapped type must implement [`AioSource`] to be driven
/// by the reactor.
///
/// The wrapped source may be accessed through the `Aio` via the `Deref` and
/// `DerefMut` traits.
///
/// ## Clearing readiness
///
/// If [`Aio::poll_ready`] returns ready, but the consumer determines that the
/// Source is not completely ready and must return to the Pending state,
/// [`Aio::clear_ready`] may be used. This can be useful with
/// [`lio_listio`], which may generate a kevent when only a portion of the
/// operations have completed.
///
/// ## Platforms
///
/// Only FreeBSD implements POSIX AIO with kqueue notification, so
/// `Aio` is only available for that operating system.
///
/// [`lio_listio`]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html
// Note: Unlike every other kqueue event source, POSIX AIO registers events not
// via kevent(2) but when the aiocb is submitted to the kernel via aio_read,
// aio_write, etc. It needs the kqueue's file descriptor to do that. So
// AsyncFd can't be used for POSIX AIO.
//
// Note that Aio doesn't implement Drop. There's no need. Unlike other
// kqueue sources, simply dropping the object effectively deregisters it.
pub struct Aio<E> {
io: MioSource<E>,
registration: Registration,
}
// ===== impl Aio =====
impl<E: AioSource> Aio<E> {
/// Creates a new `Aio` suitable for use with POSIX AIO functions.
///
/// It will be associated with the default reactor. The runtime is usually
/// set implicitly when this function is called from a future driven by a
/// Tokio runtime, otherwise runtime can be set explicitly with
/// [`Runtime::enter`](crate::runtime::Runtime::enter) function.
pub fn new_for_aio(io: E) -> io::Result<Self> {
Self::new_with_interest(io, Interest::AIO)
}
/// Creates a new `Aio` suitable for use with [`lio_listio`].
///
/// It will be associated with the default reactor. The runtime is usually
/// set implicitly when this function is called from a future driven by a
/// Tokio runtime, otherwise runtime can be set explicitly with
/// [`Runtime::enter`](crate::runtime::Runtime::enter) function.
///
/// [`lio_listio`]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html
pub fn new_for_lio(io: E) -> io::Result<Self> {
Self::new_with_interest(io, Interest::LIO)
}
fn new_with_interest(io: E, interest: Interest) -> io::Result<Self> {
let mut io = MioSource(io);
let handle = Handle::current();
let registration = Registration::new_with_interest_and_handle(&mut io, interest, handle)?;
Ok(Self { io, registration })
}
/// Indicates to Tokio that the source is no longer ready. The internal
/// readiness flag will be cleared, and tokio will wait for the next
/// edge-triggered readiness notification from the OS.
///
/// It is critical that this method not be called unless your code
/// _actually observes_ that the source is _not_ ready. The OS must
/// deliver a subsequent notification, or this source will block
/// forever. It is equally critical that you `do` call this method if you
/// resubmit the same structure to the kernel and poll it again.
///
/// This method is not very useful with AIO readiness, since each `aiocb`
/// structure is typically only used once. It's main use with
/// [`lio_listio`], which will sometimes send notification when only a
/// portion of its elements are complete. In that case, the caller must
/// call `clear_ready` before resubmitting it.
///
/// [`lio_listio`]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html
pub fn clear_ready(&self, ev: AioEvent) {
self.registration.clear_readiness(ev.0)
}
/// Destroy the [`Aio`] and return its inner source.
pub fn into_inner(self) -> E {
self.io.0
}
/// Polls for readiness. Either AIO or LIO counts.
///
/// This method returns:
/// * `Poll::Pending` if the underlying operation is not complete, whether
/// or not it completed successfully. This will be true if the OS is
/// still processing it, or if it has not yet been submitted to the OS.
/// * `Poll::Ready(Ok(_))` if the underlying operation is complete.
/// * `Poll::Ready(Err(_))` if the reactor has been shutdown. This does
/// _not_ indicate that the underlying operation encountered an error.
///
/// When the method returns `Poll::Pending`, the `Waker` in the provided `Context`
/// is scheduled to receive a wakeup when the underlying operation
/// completes. Note that on multiple calls to `poll_ready`, only the `Waker` from the
/// `Context` passed to the most recent call is scheduled to receive a wakeup.
pub fn poll_ready<'a>(&'a self, cx: &mut Context<'_>) -> Poll<io::Result<AioEvent>> {
let ev = ready!(self.registration.poll_read_ready(cx))?;
Poll::Ready(Ok(AioEvent(ev)))
}
}
impl<E: AioSource> Deref for Aio<E> {
type Target = E;
fn deref(&self) -> &E {
&self.io.0
}
}
impl<E: AioSource> DerefMut for Aio<E> {
fn deref_mut(&mut self) -> &mut E {
&mut self.io.0
}
}
impl<E: AioSource + fmt::Debug> fmt::Debug for Aio<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Aio").field("io", &self.io.0).finish()
}
}
/// Opaque data returned by [`Aio::poll_ready`].
///
/// It can be fed back to [`Aio::clear_ready`].
#[derive(Debug)]
pub struct AioEvent(ReadyEvent);

View File

@ -14,6 +14,26 @@ use std::ops;
pub struct Interest(mio::Interest);
impl Interest {
// The non-FreeBSD definitions in this block are active only when
// building documentation.
cfg_aio! {
/// Interest for POSIX AIO
#[cfg(target_os = "freebsd")]
pub const AIO: Interest = Interest(mio::Interest::AIO);
/// Interest for POSIX AIO
#[cfg(not(target_os = "freebsd"))]
pub const AIO: Interest = Interest(mio::Interest::READABLE);
/// Interest for POSIX AIO lio_listio events
#[cfg(target_os = "freebsd")]
pub const LIO: Interest = Interest(mio::Interest::LIO);
/// Interest for POSIX AIO lio_listio events
#[cfg(not(target_os = "freebsd"))]
pub const LIO: Interest = Interest(mio::Interest::READABLE);
}
/// Interest in all readable events.
///
/// Readable interest includes read-closed events.

View File

@ -51,6 +51,7 @@ pub(crate) struct Handle {
inner: Weak<Inner>,
}
#[derive(Debug)]
pub(crate) struct ReadyEvent {
tick: u8,
pub(crate) ready: Ready,

View File

@ -38,6 +38,17 @@ impl Ready {
pub(crate) fn from_mio(event: &mio::event::Event) -> Ready {
let mut ready = Ready::EMPTY;
#[cfg(all(target_os = "freebsd", feature = "net"))]
{
if event.is_aio() {
ready |= Ready::READABLE;
}
if event.is_lio() {
ready |= Ready::READABLE;
}
}
if event.is_readable() {
ready |= Ready::READABLE;
}

View File

@ -217,6 +217,15 @@ cfg_io_driver_impl! {
pub(crate) use poll_evented::PollEvented;
}
cfg_aio! {
/// BSD-specific I/O types
pub mod bsd {
mod poll_aio;
pub use poll_aio::{Aio, AioEvent, AioSource};
}
}
cfg_net_unix! {
mod async_fd;

View File

@ -314,8 +314,9 @@
//! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler.
//! - `io-util`: Enables the IO based `Ext` traits.
//! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types.
//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and `UdpSocket`,
//! as well as (on Unix-like systems) `AsyncFd`
//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and
//! `UdpSocket`, as well as (on Unix-like systems) `AsyncFd` and (on
//! FreeBSD) `PollAio`.
//! - `time`: Enables `tokio::time` types and allows the schedulers to enable
//! the built in timer.
//! - `process`: Enables `tokio::process` types.

View File

@ -45,6 +45,18 @@ macro_rules! cfg_atomic_waker_impl {
}
}
macro_rules! cfg_aio {
($($item:item)*) => {
$(
#[cfg(all(any(docsrs, target_os = "freebsd"), feature = "net"))]
#[cfg_attr(docsrs,
doc(cfg(all(target_os = "freebsd", feature = "net")))
)]
$item
)*
}
}
macro_rules! cfg_fs {
($($item:item)*) => {
$(

375
tokio/tests/io_poll_aio.rs Normal file
View File

@ -0,0 +1,375 @@
#![warn(rust_2018_idioms)]
#![cfg(all(target_os = "freebsd", feature = "net"))]
use mio_aio::{AioCb, AioFsyncMode, LioCb};
use std::{
future::Future,
mem,
os::unix::io::{AsRawFd, RawFd},
pin::Pin,
task::{Context, Poll},
};
use tempfile::tempfile;
use tokio::io::bsd::{Aio, AioSource};
use tokio_test::assert_pending;
mod aio {
use super::*;
/// Adapts mio_aio::AioCb (which implements mio::event::Source) to AioSource
struct WrappedAioCb<'a>(AioCb<'a>);
impl<'a> AioSource for WrappedAioCb<'a> {
fn register(&mut self, kq: RawFd, token: usize) {
self.0.register_raw(kq, token)
}
fn deregister(&mut self) {
self.0.deregister_raw()
}
}
/// A very crude implementation of an AIO-based future
struct FsyncFut(Aio<WrappedAioCb<'static>>);
impl Future for FsyncFut {
type Output = std::io::Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(_ev)) => {
// At this point, we could clear readiness. But there's no
// point, since we're about to drop the Aio.
let result = (*self.0).0.aio_return();
match result {
Ok(_) => Poll::Ready(Ok(())),
Err(e) => Poll::Ready(Err(e.into())),
}
}
}
}
}
/// Low-level AIO Source
///
/// An example bypassing mio_aio and Nix to demonstrate how the kevent
/// registration actually works, under the hood.
struct LlSource(Pin<Box<libc::aiocb>>);
impl AioSource for LlSource {
fn register(&mut self, kq: RawFd, token: usize) {
let mut sev: libc::sigevent = unsafe { mem::MaybeUninit::zeroed().assume_init() };
sev.sigev_notify = libc::SIGEV_KEVENT;
sev.sigev_signo = kq;
sev.sigev_value = libc::sigval {
sival_ptr: token as *mut libc::c_void,
};
self.0.aio_sigevent = sev;
}
fn deregister(&mut self) {
unsafe {
self.0.aio_sigevent = mem::zeroed();
}
}
}
struct LlFut(Aio<LlSource>);
impl Future for LlFut {
type Output = std::io::Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(_ev)) => {
let r = unsafe { libc::aio_return(self.0 .0.as_mut().get_unchecked_mut()) };
assert_eq!(0, r);
Poll::Ready(Ok(()))
}
}
}
}
/// A very simple object that can implement AioSource and can be reused.
///
/// mio_aio normally assumes that each AioCb will be consumed on completion.
/// This somewhat contrived example shows how an Aio object can be reused
/// anyway.
struct ReusableFsyncSource {
aiocb: Pin<Box<AioCb<'static>>>,
fd: RawFd,
token: usize,
}
impl ReusableFsyncSource {
fn fsync(&mut self) {
self.aiocb.register_raw(self.fd, self.token);
self.aiocb.fsync(AioFsyncMode::O_SYNC).unwrap();
}
fn new(aiocb: AioCb<'static>) -> Self {
ReusableFsyncSource {
aiocb: Box::pin(aiocb),
fd: 0,
token: 0,
}
}
fn reset(&mut self, aiocb: AioCb<'static>) {
self.aiocb = Box::pin(aiocb);
}
}
impl AioSource for ReusableFsyncSource {
fn register(&mut self, kq: RawFd, token: usize) {
self.fd = kq;
self.token = token;
}
fn deregister(&mut self) {
self.fd = 0;
}
}
struct ReusableFsyncFut<'a>(&'a mut Aio<ReusableFsyncSource>);
impl<'a> Future for ReusableFsyncFut<'a> {
type Output = std::io::Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(ev)) => {
// Since this future uses a reusable Aio, we must clear
// its readiness here. That makes the future
// non-idempotent; the caller can't poll it repeatedly after
// it has already returned Ready. But that's ok; most
// futures behave this way.
self.0.clear_ready(ev);
let result = (*self.0).aiocb.aio_return();
match result {
Ok(_) => Poll::Ready(Ok(())),
Err(e) => Poll::Ready(Err(e.into())),
}
}
}
}
}
#[tokio::test]
async fn fsync() {
let f = tempfile().unwrap();
let fd = f.as_raw_fd();
let aiocb = AioCb::from_fd(fd, 0);
let source = WrappedAioCb(aiocb);
let mut poll_aio = Aio::new_for_aio(source).unwrap();
(*poll_aio).0.fsync(AioFsyncMode::O_SYNC).unwrap();
let fut = FsyncFut(poll_aio);
fut.await.unwrap();
}
#[tokio::test]
async fn ll_fsync() {
let f = tempfile().unwrap();
let fd = f.as_raw_fd();
let mut aiocb: libc::aiocb = unsafe { mem::MaybeUninit::zeroed().assume_init() };
aiocb.aio_fildes = fd;
let source = LlSource(Box::pin(aiocb));
let mut poll_aio = Aio::new_for_aio(source).unwrap();
let r = unsafe {
let p = (*poll_aio).0.as_mut().get_unchecked_mut();
libc::aio_fsync(libc::O_SYNC, p)
};
assert_eq!(0, r);
let fut = LlFut(poll_aio);
fut.await.unwrap();
}
/// A suitably crafted future type can reuse an Aio object
#[tokio::test]
async fn reuse() {
let f = tempfile().unwrap();
let fd = f.as_raw_fd();
let aiocb0 = AioCb::from_fd(fd, 0);
let source = ReusableFsyncSource::new(aiocb0);
let mut poll_aio = Aio::new_for_aio(source).unwrap();
poll_aio.fsync();
let fut0 = ReusableFsyncFut(&mut poll_aio);
fut0.await.unwrap();
let aiocb1 = AioCb::from_fd(fd, 0);
poll_aio.reset(aiocb1);
let mut ctx = Context::from_waker(futures::task::noop_waker_ref());
assert_pending!(poll_aio.poll_ready(&mut ctx));
poll_aio.fsync();
let fut1 = ReusableFsyncFut(&mut poll_aio);
fut1.await.unwrap();
}
}
mod lio {
use super::*;
struct WrappedLioCb<'a>(LioCb<'a>);
impl<'a> AioSource for WrappedLioCb<'a> {
fn register(&mut self, kq: RawFd, token: usize) {
self.0.register_raw(kq, token)
}
fn deregister(&mut self) {
self.0.deregister_raw()
}
}
/// A very crude lio_listio-based Future
struct LioFut(Option<Aio<WrappedLioCb<'static>>>);
impl Future for LioFut {
type Output = std::io::Result<Vec<isize>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.as_mut().unwrap().poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(_ev)) => {
// At this point, we could clear readiness. But there's no
// point, since we're about to drop the Aio.
let r = self.0.take().unwrap().into_inner().0.into_results(|iter| {
iter.map(|lr| lr.result.unwrap()).collect::<Vec<isize>>()
});
Poll::Ready(Ok(r))
}
}
}
}
/// Minimal example demonstrating reuse of an Aio object with lio
/// readiness. mio_aio::LioCb actually does something similar under the
/// hood.
struct ReusableLioSource {
liocb: Option<LioCb<'static>>,
fd: RawFd,
token: usize,
}
impl ReusableLioSource {
fn new(liocb: LioCb<'static>) -> Self {
ReusableLioSource {
liocb: Some(liocb),
fd: 0,
token: 0,
}
}
fn reset(&mut self, liocb: LioCb<'static>) {
self.liocb = Some(liocb);
}
fn submit(&mut self) {
self.liocb
.as_mut()
.unwrap()
.register_raw(self.fd, self.token);
self.liocb.as_mut().unwrap().submit().unwrap();
}
}
impl AioSource for ReusableLioSource {
fn register(&mut self, kq: RawFd, token: usize) {
self.fd = kq;
self.token = token;
}
fn deregister(&mut self) {
self.fd = 0;
}
}
struct ReusableLioFut<'a>(&'a mut Aio<ReusableLioSource>);
impl<'a> Future for ReusableLioFut<'a> {
type Output = std::io::Result<Vec<isize>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let poll_result = self.0.poll_ready(cx);
match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
Poll::Ready(Ok(ev)) => {
// Since this future uses a reusable Aio, we must clear
// its readiness here. That makes the future
// non-idempotent; the caller can't poll it repeatedly after
// it has already returned Ready. But that's ok; most
// futures behave this way.
self.0.clear_ready(ev);
let r = (*self.0).liocb.take().unwrap().into_results(|iter| {
iter.map(|lr| lr.result.unwrap()).collect::<Vec<isize>>()
});
Poll::Ready(Ok(r))
}
}
}
}
/// An lio_listio operation with one write element
#[tokio::test]
async fn onewrite() {
const WBUF: &[u8] = b"abcdef";
let f = tempfile().unwrap();
let mut builder = mio_aio::LioCbBuilder::with_capacity(1);
builder = builder.emplace_slice(
f.as_raw_fd(),
0,
&WBUF[..],
0,
mio_aio::LioOpcode::LIO_WRITE,
);
let liocb = builder.finish();
let source = WrappedLioCb(liocb);
let mut poll_aio = Aio::new_for_lio(source).unwrap();
// Send the operation to the kernel
(*poll_aio).0.submit().unwrap();
let fut = LioFut(Some(poll_aio));
let v = fut.await.unwrap();
assert_eq!(v.len(), 1);
assert_eq!(v[0] as usize, WBUF.len());
}
/// A suitably crafted future type can reuse an Aio object
#[tokio::test]
async fn reuse() {
const WBUF: &[u8] = b"abcdef";
let f = tempfile().unwrap();
let mut builder0 = mio_aio::LioCbBuilder::with_capacity(1);
builder0 = builder0.emplace_slice(
f.as_raw_fd(),
0,
&WBUF[..],
0,
mio_aio::LioOpcode::LIO_WRITE,
);
let liocb0 = builder0.finish();
let source = ReusableLioSource::new(liocb0);
let mut poll_aio = Aio::new_for_aio(source).unwrap();
poll_aio.submit();
let fut0 = ReusableLioFut(&mut poll_aio);
let v = fut0.await.unwrap();
assert_eq!(v.len(), 1);
assert_eq!(v[0] as usize, WBUF.len());
// Now reuse the same Aio
let mut builder1 = mio_aio::LioCbBuilder::with_capacity(1);
builder1 = builder1.emplace_slice(
f.as_raw_fd(),
0,
&WBUF[..],
0,
mio_aio::LioOpcode::LIO_WRITE,
);
let liocb1 = builder1.finish();
poll_aio.reset(liocb1);
let mut ctx = Context::from_waker(futures::task::noop_waker_ref());
assert_pending!(poll_aio.poll_ready(&mut ctx));
poll_aio.submit();
let fut1 = ReusableLioFut(&mut poll_aio);
let v = fut1.await.unwrap();
assert_eq!(v.len(), 1);
assert_eq!(v[0] as usize, WBUF.len());
}
}