net: add try_*, readable, writable, ready, and peer_addr methods to split halves (#4120)

This commit is contained in:
Noah Kennedy 2021-09-25 13:19:29 -05:00 committed by GitHub
parent 6c1a1d9b07
commit d9ca1517c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 859 additions and 6 deletions

View File

@ -9,14 +9,18 @@
//! level.
use crate::future::poll_fn;
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
use crate::net::TcpStream;
use std::io;
use std::net::Shutdown;
use std::net::{Shutdown, SocketAddr};
use std::pin::Pin;
use std::task::{Context, Poll};
cfg_io_util! {
use bytes::BufMut;
}
/// Borrowed read half of a [`TcpStream`], created by [`split`].
///
/// Reading from a `ReadHalf` is usually done using the convenience methods found on the
@ -134,6 +138,211 @@ impl ReadHalf<'_> {
let mut buf = ReadBuf::new(buf);
poll_fn(|cx| self.poll_peek(cx, &mut buf)).await
}
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// This function is equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.0.ready(interest).await
}
/// Wait for the socket to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// This function is also equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn readable(&self) -> io::Result<()> {
self.0.readable().await
}
/// Try to read data from the stream into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.try_read(buf)
}
/// Try to read data from the stream into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: Self::try_read()
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.0.try_read_vectored(bufs)
}
cfg_io_util! {
/// Try to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.0.try_read_buf(buf)
}
}
/// Returns the remote address that this stream is connected to.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the local address that this stream is bound to.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.0.local_addr()
}
}
impl WriteHalf<'_> {
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// This function is equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.0.ready(interest).await
}
/// Wait for the socket to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn writable(&self) -> io::Result<()> {
self.0.writable().await
}
/// Try to write a buffer to the stream, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.0.try_write(buf)
}
/// Try to write several buffers to the stream, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: Self::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write_vectored(&self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.0.try_write_vectored(bufs)
}
/// Returns the remote address that this stream is connected to.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the local address that this stream is bound to.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.0.local_addr()
}
}
impl AsyncRead for ReadHalf<'_> {

View File

@ -9,16 +9,20 @@
//! level.
use crate::future::poll_fn;
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
use crate::net::TcpStream;
use std::error::Error;
use std::net::Shutdown;
use std::net::{Shutdown, SocketAddr};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::{fmt, io};
cfg_io_util! {
use bytes::BufMut;
}
/// Owned read half of a [`TcpStream`], created by [`into_split`].
///
/// Reading from an `OwnedReadHalf` is usually done using the convenience methods found
@ -189,6 +193,128 @@ impl OwnedReadHalf {
let mut buf = ReadBuf::new(buf);
poll_fn(|cx| self.poll_peek(cx, &mut buf)).await
}
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// This function is equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.inner.ready(interest).await
}
/// Wait for the socket to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// This function is also equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn readable(&self) -> io::Result<()> {
self.inner.readable().await
}
/// Try to read data from the stream into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.try_read(buf)
}
/// Try to read data from the stream into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: Self::try_read()
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.try_read_vectored(bufs)
}
cfg_io_util! {
/// Try to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.inner.try_read_buf(buf)
}
}
/// Returns the remote address that this stream is connected to.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner.peer_addr()
}
/// Returns the local address that this stream is bound to.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.local_addr()
}
}
impl AsyncRead for OwnedReadHalf {
@ -218,6 +344,87 @@ impl OwnedWriteHalf {
self.shutdown_on_drop = false;
drop(self);
}
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// This function is equivalent to [`TcpStream::ready`].
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.inner.ready(interest).await
}
/// Wait for the socket to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn writable(&self) -> io::Result<()> {
self.inner.writable().await
}
/// Try to write a buffer to the stream, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.inner.try_write(buf)
}
/// Try to write several buffers to the stream, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: Self::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write_vectored(&self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.inner.try_write_vectored(bufs)
}
/// Returns the remote address that this stream is connected to.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner.peer_addr()
}
/// Returns the local address that this stream is bound to.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.local_addr()
}
}
impl Drop for OwnedWriteHalf {

View File

@ -8,14 +8,19 @@
//! split has no associated overhead and enforces all invariants at the type
//! level.
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
use crate::net::UnixStream;
use crate::net::unix::SocketAddr;
use std::io;
use std::net::Shutdown;
use std::pin::Pin;
use std::task::{Context, Poll};
cfg_io_util! {
use bytes::BufMut;
}
/// Borrowed read half of a [`UnixStream`], created by [`split`].
///
/// Reading from a `ReadHalf` is usually done using the convenience methods found on the
@ -47,6 +52,206 @@ pub(crate) fn split(stream: &mut UnixStream) -> (ReadHalf<'_>, WriteHalf<'_>) {
(ReadHalf(stream), WriteHalf(stream))
}
impl ReadHalf<'_> {
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.0.ready(interest).await
}
/// Wait for the socket to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn readable(&self) -> io::Result<()> {
self.0.readable().await
}
/// Try to read data from the stream into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.try_read(buf)
}
cfg_io_util! {
/// Try to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.0.try_read_buf(buf)
}
}
/// Try to read data from the stream into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: Self::try_read()
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.0.try_read_vectored(bufs)
}
/// Returns the socket address of the remote half of this connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the socket address of the local half of this connection.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.0.local_addr()
}
}
impl WriteHalf<'_> {
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.0.ready(interest).await
}
/// Wait for the socket to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn writable(&self) -> io::Result<()> {
self.0.writable().await
}
/// Try to write a buffer to the stream, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.0.try_write(buf)
}
/// Try to write several buffers to the stream, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: Self::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.0.try_write_vectored(buf)
}
/// Returns the socket address of the remote half of this connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the socket address of the local half of this connection.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.0.local_addr()
}
}
impl AsyncRead for ReadHalf<'_> {
fn poll_read(
self: Pin<&mut Self>,

View File

@ -8,9 +8,10 @@
//! split has no associated overhead and enforces all invariants at the type
//! level.
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::io::{AsyncRead, AsyncWrite, Interest, ReadBuf, Ready};
use crate::net::UnixStream;
use crate::net::unix::SocketAddr;
use std::error::Error;
use std::net::Shutdown;
use std::pin::Pin;
@ -18,6 +19,10 @@ use std::sync::Arc;
use std::task::{Context, Poll};
use std::{fmt, io};
cfg_io_util! {
use bytes::BufMut;
}
/// Owned read half of a [`UnixStream`], created by [`into_split`].
///
/// Reading from an `OwnedReadHalf` is usually done using the convenience methods found
@ -102,6 +107,124 @@ impl OwnedReadHalf {
pub fn reunite(self, other: OwnedWriteHalf) -> Result<UnixStream, ReuniteError> {
reunite(self, other)
}
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.inner.ready(interest).await
}
/// Wait for the socket to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn readable(&self) -> io::Result<()> {
self.inner.readable().await
}
/// Try to read data from the stream into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.try_read(buf)
}
cfg_io_util! {
/// Try to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.inner.try_read_buf(buf)
}
}
/// Try to read data from the stream into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the socket but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: Self::try_read()
/// [`readable()`]: Self::readable()
/// [`ready()`]: Self::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.try_read_vectored(bufs)
}
/// Returns the socket address of the remote half of this connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner.peer_addr()
}
/// Returns the socket address of the local half of this connection.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.local_addr()
}
}
impl AsyncRead for OwnedReadHalf {
@ -131,6 +254,85 @@ impl OwnedWriteHalf {
self.shutdown_on_drop = false;
drop(self);
}
/// Wait for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same socket on a single
/// task without splitting the socket.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to read or write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
self.inner.ready(interest).await
}
/// Wait for the socket to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Cancel safety
///
/// This method is cancel safe. Once a readiness event occurs, the method
/// will continue to return immediately until the readiness event is
/// consumed by an attempt to write that fails with `WouldBlock` or
/// `Poll::Pending`.
pub async fn writable(&self) -> io::Result<()> {
self.inner.writable().await
}
/// Try to write a buffer to the stream, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.inner.try_write(buf)
}
/// Try to write several buffers to the stream, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: Self::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the stream is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.inner.try_write_vectored(buf)
}
/// Returns the socket address of the remote half of this connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.inner.peer_addr()
}
/// Returns the socket address of the local half of this connection.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.local_addr()
}
}
impl Drop for OwnedWriteHalf {

View File

@ -773,11 +773,41 @@ impl UnixStream {
}
/// Returns the socket address of the local half of this connection.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UnixStream;
///
/// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
/// let dir = tempfile::tempdir().unwrap();
/// let bind_path = dir.path().join("bind_path");
/// let stream = UnixStream::connect(bind_path).await?;
///
/// println!("{:?}", stream.local_addr()?);
/// # Ok(())
/// # }
/// ```
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.io.local_addr().map(SocketAddr)
}
/// Returns the socket address of the remote half of this connection.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::UnixStream;
///
/// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
/// let dir = tempfile::tempdir().unwrap();
/// let bind_path = dir.path().join("bind_path");
/// let stream = UnixStream::connect(bind_path).await?;
///
/// println!("{:?}", stream.peer_addr()?);
/// # Ok(())
/// # }
/// ```
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.io.peer_addr().map(SocketAddr)
}