This adds initial, unstable, support for the wasm32-wasi target. Not all of Tokio's
features are supported yet as WASI's non-blocking APIs are still limited.
Refs: tokio-rs/tokio#4827
This change removes all references to `Stream` from
within the `tokio` crate and moves them into a new
`tokio-stream` crate. Most types have had their
`impl Stream` removed as well in-favor of their
inherent methods.
Closes#2870
This refactors I/O registration in a few ways:
- Cleans up the cached readiness in `PollEvented`. This cache used to
be helpful when readiness was a linked list of `*mut Node`s in
`Registration`. Previous refactors have turned `Registration` into just
an `AtomicUsize` holding the current readiness, so the cache is just
extra work and complexity. Gone.
- Polling the `Registration` for readiness now gives a `ReadyEvent`,
which includes the driver tick. This event must be passed back into
`clear_readiness`, so that the readiness is only cleared from `Registration`
if the tick hasn't changed. Previously, it was possible to clear the
readiness even though another thread had *just* polled the driver and
found the socket ready again.
- Registration now also contains an `async fn readiness`, which stores
wakers in an instrusive linked list. This allows an unbounded number
of tasks to register for readiness (previously, only 1 per direction (read
and write)). By using the intrusive linked list, there is no concern of
leaking the storage of the wakers, since they are stored inside the `async fn`
and released when the future is dropped.
- Registration retains a `poll_readiness(Direction)` method, to support
`AsyncRead` and `AsyncWrite`. They aren't able to use `async fn`s, and
so there are 2 reserved slots for those methods.
- IO types where it makes sense to have multiple tasks waiting on them
now take advantage of this new `async fn readiness`, such as `UdpSocket`
and `UnixDatagram`.
Additionally, this makes the `io-driver` "feature" internal-only (no longer
documented, not part of public API), and adds a second internal-only
feature, `io-readiness`, to group together linked list part of registration
that is only used by some of the IO types.
After a bit of discussion, changing stream-based transports (like
`TcpStream`) to have `async fn read(&self)` is punted, since that
is likely too easy of a footgun to activate.
Refs: #2779, #2728
Introduces `StreamExt` trait. This trait will be used to add utility functions
to make working with streams easier. This patch includes two functions:
* `next`: a future returning the item in the stream.
* `map`: transform each item in the stream.
In an effort to reach API stability, the `tokio` crate is shedding its
_public_ dependencies on crates that are either a) do not provide a
stable (1.0+) release with longevity guarantees or b) match the `tokio`
release cadence. Of course, implementing `std` traits fits the
requirements.
The on exception, for now, is the `Stream` trait found in `futures_core`.
It is expected that this trait will not change much and be moved into `std.
Since Tokio is not yet going reaching 1.0, I feel that it is acceptable to maintain
a dependency on this trait given how foundational it is.
Since the `Stream` implementation is optional, types that are logically
streams provide `async fn next_*` functions to obtain the next value.
Avoiding the `next()` name prevents fn conflicts with `StreamExt::next()`.
Additionally, some misc cleanup is also done:
- `tokio::io::io` -> `tokio::io::util`.
- `delay` -> `delay_until`.
- `Timeout::new` -> `timeout(...)`.
- `signal::ctrl_c()` returns a future instead of a stream.
- `{tcp,unix}::Incoming` is removed (due to lack of `Stream` trait).
- `time::Throttle` is removed (due to lack of `Stream` trait).
- Fix: `mpsc::UnboundedSender::send(&self)` (no more conflict with `Sink` fns).
Related to #1318, Tokio APIs that are "less stable" are moved into a new
`tokio-util` crate. This crate will mirror `tokio` and provide
additional APIs that may require a greater rate of breaking changes.
As examples require `tokio-util`, they are moved into a separate
crate (`examples`). This has the added advantage of being able to avoid
example only dependencies in the `tokio` crate.