
Generally, this mimics the way `MappedRwLock*Guard`s are implemented in `parking_lot`. By storing a raw pointer in the guards themselves referencing the mapped data and maintaining type invariants through `PhantomData`. I didn't try to think too much about this, so if someone has objections I'd love to hear them. I've also dropped the internal use of `ReleasingPermit`, since it made the guards unecessarily large. The number of permits that need to be released are already known by the guards themselves, and is instead governed directly in the relevant `Drop` impls. This has the benefit of making the guards as small as possible, for the non-mapped variants this means a single reference is enough. `fmt::Debug` impls have been adjusted to behave exactly like the delegating impls in `parking_lot`. `fmt::Display` impls have been added for all guard types which behave the same. This does change the format of debug impls, for which I'm not sure if we provide any guarantees.
Tokio
A runtime for writing reliable, asynchronous, and slim applications with the Rust programming language. It is:
-
Fast: Tokio's zero-cost abstractions give you bare-metal performance.
-
Reliable: Tokio leverages Rust's ownership, type system, and concurrency model to reduce bugs and ensure thread safety.
-
Scalable: Tokio has a minimal footprint, and handles backpressure and cancellation naturally.
Website | Guides | API Docs | Roadmap | Chat
Overview
Tokio is an event-driven, non-blocking I/O platform for writing asynchronous applications with the Rust programming language. At a high level, it provides a few major components:
- A multithreaded, work-stealing based task scheduler.
- A reactor backed by the operating system's event queue (epoll, kqueue, IOCP, etc...).
- Asynchronous TCP and UDP sockets.
These components provide the runtime components necessary for building an asynchronous application.
Example
A basic TCP echo server with Tokio:
use tokio::net::TcpListener;
use tokio::prelude::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut listener = TcpListener::bind("127.0.0.1:8080").await?;
loop {
let (mut socket, _) = listener.accept().await?;
tokio::spawn(async move {
let mut buf = [0; 1024];
// In a loop, read data from the socket and write the data back.
loop {
let n = match socket.read(&mut buf).await {
// socket closed
Ok(n) if n == 0 => return,
Ok(n) => n,
Err(e) => {
eprintln!("failed to read from socket; err = {:?}", e);
return;
}
};
// Write the data back
if let Err(e) = socket.write_all(&buf[0..n]).await {
eprintln!("failed to write to socket; err = {:?}", e);
return;
}
}
});
}
}
More examples can be found here. For a larger "real world" example, see the mini-redis repository.
To see a list of the available features flags that can be enabled, check our docs.
Getting Help
First, see if the answer to your question can be found in the Guides or the API documentation. If the answer is not there, there is an active community in the Tokio Discord server. We would be happy to try to answer your question. You can also ask your question on the discussions page.
Contributing
🎈 Thanks for your help improving the project! We are so happy to have you! We have a contributing guide to help you get involved in the Tokio project.
Related Projects
In addition to the crates in this repository, the Tokio project also maintains several other libraries, including:
-
hyper
: A fast and correct HTTP/1.1 and HTTP/2 implementation for Rust. -
tonic
: A gRPC over HTTP/2 implementation focused on high performance, interoperability, and flexibility. -
warp
: A super-easy, composable, web server framework for warp speeds. -
tower
: A library of modular and reusable components for building robust networking clients and servers. -
tracing
(formerlytokio-trace
): A framework for application-level tracing and async-aware diagnostics. -
rdbc
: A Rust database connectivity library for MySQL, Postgres and SQLite. -
mio
: A low-level, cross-platform abstraction over OS I/O APIs that powerstokio
. -
bytes
: Utilities for working with bytes, including efficient byte buffers. -
loom
: A testing tool for concurrent Rust code
Supported Rust Versions
Tokio is built against the latest stable release. The minimum supported version is 1.39. The current Tokio version is not guaranteed to build on Rust versions earlier than the minimum supported version.
License
This project is licensed under the MIT license.
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in Tokio by you, shall be licensed as MIT, without any additional terms or conditions.