Dion Dokter b659e3d529 Add ADC
2024-04-14 00:04:13 +02:00

298 lines
8.2 KiB
Rust

use cfg_if::cfg_if;
use embassy_hal_internal::into_ref;
use super::blocking_delay_us;
use crate::adc::{Adc, AdcPin, Instance, Resolution, SampleTime};
use crate::Peripheral;
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3000;
pub struct VrefInt;
impl<T: Instance> AdcPin<T> for VrefInt {}
impl<T: Instance> super::SealedAdcPin<T> for VrefInt {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 13;
} else if #[cfg(adc_h5)] {
let val = 17;
} else if #[cfg(adc_u0)] {
let val = 12;
} else {
let val = 0;
}
}
val
}
}
pub struct Temperature;
impl<T: Instance> AdcPin<T> for Temperature {}
impl<T: Instance> super::SealedAdcPin<T> for Temperature {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 12;
} else if #[cfg(adc_h5)] {
let val = 16;
} else if #[cfg(adc_u0)] {
let val = 11;
} else {
let val = 17;
}
}
val
}
}
pub struct Vbat;
impl<T: Instance> AdcPin<T> for Vbat {}
impl<T: Instance> super::SealedAdcPin<T> for Vbat {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
let val = 14;
} else if #[cfg(adc_h5)] {
let val = 2;
} else if #[cfg(adc_h5)] {
let val = 13;
} else {
let val = 18;
}
}
val
}
}
cfg_if! {
if #[cfg(adc_h5)] {
pub struct VddCore;
impl<T: Instance> AdcPin<T> for VddCore {}
impl<T: Instance> super::SealedAdcPin<T> for VddCore {
fn channel(&self) -> u8 {
6
}
}
}
}
cfg_if! {
if #[cfg(adc_u0)] {
pub struct DacOut;
impl<T: Instance> AdcPin<T> for DacOut {}
impl<T: Instance> super::SealedAdcPin<T> for DacOut {
fn channel(&self) -> u8 {
19
}
}
}
}
impl<'d, T: Instance> Adc<'d, T> {
pub fn new(adc: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(adc);
T::enable_and_reset();
T::regs().cr().modify(|reg| {
#[cfg(not(any(adc_g0, adc_u0)))]
reg.set_deeppwd(false);
reg.set_advregen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(false);
});
blocking_delay_us(20);
T::regs().cr().modify(|reg| {
reg.set_adcal(true);
});
while T::regs().cr().read().adcal() {
// spin
}
blocking_delay_us(1);
Self {
adc,
sample_time: SampleTime::from_bits(0),
}
}
pub fn enable_vrefint(&self) -> VrefInt {
#[cfg(not(any(adc_g0, adc_u0)))]
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
// "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us
// to stabilize the internal voltage reference.
blocking_delay_us(15);
VrefInt {}
}
pub fn enable_temperature(&self) -> Temperature {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
T::regs().ccr().modify(|reg| {
reg.set_tsen(true);
});
} else if #[cfg(adc_h5)] {
T::common_regs().ccr().modify(|reg| {
reg.set_tsen(true);
});
} else {
T::common_regs().ccr().modify(|reg| {
reg.set_ch17sel(true);
});
}
}
Temperature {}
}
pub fn enable_vbat(&self) -> Vbat {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
T::regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
} else if #[cfg(adc_h5)] {
T::common_regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
} else {
T::common_regs().ccr().modify(|reg| {
reg.set_ch18sel(true);
});
}
}
Vbat {}
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into()));
}
/*
/// Convert a raw sample from the `Temperature` to deg C
pub fn to_degrees_centigrade(sample: u16) -> f32 {
(130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32)
* (sample as f32 - VtempCal30::get().read() as f32)
+ 30.0
}
*/
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
pub fn read(&mut self, pin: &mut impl AdcPin<T>) -> u16 {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(adc_h5)]
if pin.channel() == 0 {
T::regs().or().modify(|reg| reg.set_op0(true));
}
// Configure channel
Self::set_channel_sample_time(pin.channel(), self.sample_time);
// Select channel
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel()));
#[cfg(any(adc_g0, adc_u0))]
T::regs().chselr().write(|reg| reg.set_chsel(1 << pin.channel()));
// Some models are affected by an erratum:
// If we perform conversions slower than 1 kHz, the first read ADC value can be
// corrupted, so we discard it and measure again.
//
// STM32L471xx: Section 2.7.3
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(adc_h5)]
if pin.channel() == 0 {
T::regs().or().modify(|reg| reg.set_op0(false));
}
val
}
fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into()));
} else if #[cfg(adc_h5)] {
match _ch {
0..=9 => T::regs().smpr1().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())),
_ => T::regs().smpr2().modify(|w| w.set_smp(_ch as usize % 10, sample_time.into())),
}
} else {
let sample_time = sample_time.into();
T::regs()
.smpr(_ch as usize / 10)
.modify(|reg| reg.set_smp(_ch as usize % 10, sample_time));
}
}
}
}