Support ESP32S3

This commit is contained in:
bjoernQ 2022-02-15 10:59:30 +01:00 committed by Jesse Braham
parent 0039996e8e
commit 545f997b07
11 changed files with 522 additions and 17 deletions

View File

@ -36,7 +36,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
chip: [esp32, esp32s2]
chip: [esp32, esp32s2, esp32s3]
steps:
- uses: actions/checkout@v2
- uses: esp-rs/xtensa-toolchain@afb2ca0c7eefb637832d240ae357b820a1edc2c7

View File

@ -172,37 +172,44 @@ unsafe fn core1_interrupt_peripheral() -> *const crate::pac::interrupt_core1::Re
crate::pac::INTERRUPT_CORE1::ptr()
}
#[xtensa_lx_rt::interrupt(1)]
fn _level1_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level1_interrupt() {
unsafe { level1_interrupt() };
}
#[xtensa_lx_rt::interrupt(2)]
fn _level2_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level2_interrupt() {
unsafe { level2_interrupt() };
}
#[xtensa_lx_rt::interrupt(3)]
fn _level3_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level3_interrupt() {
unsafe { level3_interrupt() };
}
#[xtensa_lx_rt::interrupt(4)]
fn _level4_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level4_interrupt() {
unsafe { level4_interrupt() };
}
#[xtensa_lx_rt::interrupt(5)]
fn _level5_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level5_interrupt() {
unsafe { level5_interrupt() };
}
#[xtensa_lx_rt::interrupt(6)]
fn _level6_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level6_interrupt() {
unsafe { level6_interrupt() };
}
#[xtensa_lx_rt::interrupt(7)]
fn _level7_interrupt() {
#[no_mangle]
#[link_section = ".rwtext"]
fn __level7_interrupt() {
unsafe { level7_interrupt() };
}

View File

@ -4,7 +4,7 @@ runner = "xtensa-esp32s3-elf-gdb -q -x xtensa.gdb"
[build]
rustflags = [
"-C", "link-arg=-nostartfiles",
"-C", "link-arg=-Wl,-Tlink.x",
"-C", "link-arg=-Wl,-Tesp32s3.x",
]
target = "xtensa-esp32s3-none-elf"

View File

@ -13,6 +13,18 @@ fn main() {
.write_all(include_bytes!("rom.x"))
.unwrap();
File::create(out.join("hal-defaults.x"))
.unwrap()
.write_all(include_bytes!("hal-defaults.x"))
.unwrap();
File::create(out.join("esp32s3.x"))
.unwrap()
.write_all(include_bytes!("esp32s3.x"))
.unwrap();
println!("cargo:rustc-link-arg=-Thal-defaults.x");
println!("cargo:rustc-link-search={}", out.display());
// Only re-run the build script when memory.x is changed,

110
esp32s3-hal/esp32s3.x Normal file
View File

@ -0,0 +1,110 @@
/* before memory.x to allow override */
ENTRY(Reset)
INCLUDE memory.x
/* after memory.x to allow override */
PROVIDE(__pre_init = DefaultPreInit);
PROVIDE(__zero_bss = default_mem_hook);
PROVIDE(__init_data = default_mem_hook);
INCLUDE exception.x
SECTIONS {
.text : ALIGN(4)
{
_stext = .;
. = ALIGN (4);
_text_start = ABSOLUTE(.);
. = ALIGN (4);
*(.literal .text .literal.* .text.*)
_text_end = ABSOLUTE(.);
_etext = .;
} > ROTEXT
.rodata_dummy (NOLOAD) :
{
/* This dummy section represents the .flash.text section but in RODATA.
* Thus, it must have its alignment and (at least) its size.
*/
/* Start at the same alignment constraint than .flash.text */
. = ALIGN(ALIGNOF(.text));
/* Create an empty gap as big as .text section */
. = SIZEOF(.text);
/* Prepare the alignment of the section above. Few bytes (0x20) must be
* added for the mapping header.
*/
. = ALIGN(0x10000) + 0x20;
_rodata_reserved_start = .;
} > RODATA
.rodata : ALIGN(4)
{
_rodata_start = ABSOLUTE(.);
. = ALIGN (4);
*(.rodata .rodata.*)
_rodata_end = ABSOLUTE(.);
} > RODATA
.rwtext : ALIGN(4)
{
. = ALIGN (4);
*(.rwtext.literal .rwtext .rwtext.literal.* .rwtext.*)
} > RWTEXT
.rwdata_dummy (NOLOAD) :
{
/* This dummy section represents the .rwtext section but in RWDATA.
* Thus, it must have its alignment and (at least) its size.
*/
/* Start at the same alignment constraint than .flash.text */
. = ALIGN(ALIGNOF(.rwtext));
/* Create an empty gap as big as .text section */
. = SIZEOF(.rwtext);
/* Prepare the alignment of the section above. Few bytes (0x20) must be
* added for the mapping header.
*/
. = ALIGN(0x10000) + 0x20;
_rwdata_reserved_start = .;
} > RWDATA
.data : ALIGN(4)
{
_data_start = ABSOLUTE(.);
. = ALIGN (4);
*(.data .data.*)
_data_end = ABSOLUTE(.);
} > RWDATA AT > RODATA
/* LMA of .data */
_sidata = LOADADDR(.data);
.bss (NOLOAD) : ALIGN(4)
{
_bss_start = ABSOLUTE(.);
. = ALIGN (4);
*(.bss .bss.* COMMON)
_bss_end = ABSOLUTE(.);
} > RWDATA
.noinit (NOLOAD) : ALIGN(4)
{
. = ALIGN(4);
*(.noinit .noinit.*)
} > RWDATA
}

View File

@ -0,0 +1,27 @@
#![no_std]
#![no_main]
use core::fmt::Write;
use esp32s3_hal::{pac::Peripherals, prelude::*, Serial, Timer};
use nb::block;
use panic_halt as _;
use xtensa_lx_rt::entry;
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take().unwrap();
let mut timer0 = Timer::new(peripherals.TIMG0);
let mut serial0 = Serial::new(peripherals.UART0).unwrap();
// Disable watchdog timer
timer0.disable();
timer0.start(40_000_000u64);
loop {
writeln!(serial0, "Hello world!").unwrap();
block!(timer0.wait()).unwrap();
}
}

View File

@ -0,0 +1,91 @@
#![no_std]
#![no_main]
use core::fmt::Write;
use esp32s3_hal::{
pac::{Peripherals, UART0},
prelude::*,
ram,
Serial,
Timer,
};
use nb::block;
use panic_halt as _;
use xtensa_lx_rt::entry;
#[ram(rtc_fast)]
static mut SOME_INITED_DATA: [u8; 2] = [0xaa, 0xbb];
#[ram(rtc_fast, uninitialized)]
static mut SOME_UNINITED_DATA: [u8; 2] = [0; 2];
#[ram(rtc_fast, zeroed)]
static mut SOME_ZEROED_DATA: [u8; 8] = [0; 8];
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take().unwrap();
let mut timer0 = Timer::new(peripherals.TIMG0);
let mut serial0 = Serial::new(peripherals.UART0).unwrap();
// Disable watchdog timer
timer0.disable();
timer0.start(10_000_000u64);
writeln!(
serial0,
"IRAM function located at {:p}",
function_in_ram as *const ()
)
.unwrap();
unsafe {
writeln!(serial0, "SOME_INITED_DATA {:x?}", SOME_INITED_DATA).unwrap();
writeln!(serial0, "SOME_UNINITED_DATA {:x?}", SOME_UNINITED_DATA).unwrap();
writeln!(serial0, "SOME_ZEROED_DATA {:x?}", SOME_ZEROED_DATA).unwrap();
SOME_INITED_DATA[0] = 0xff;
SOME_ZEROED_DATA[0] = 0xff;
writeln!(serial0, "SOME_INITED_DATA {:x?}", SOME_INITED_DATA).unwrap();
writeln!(serial0, "SOME_UNINITED_DATA {:x?}", SOME_UNINITED_DATA).unwrap();
writeln!(serial0, "SOME_ZEROED_DATA {:x?}", SOME_ZEROED_DATA).unwrap();
if SOME_UNINITED_DATA[0] != 0 {
SOME_UNINITED_DATA[0] = 0;
SOME_UNINITED_DATA[1] = 0;
}
if SOME_UNINITED_DATA[1] == 0xff {
SOME_UNINITED_DATA[1] = 0;
}
writeln!(serial0, "Counter {}", SOME_UNINITED_DATA[1]).unwrap();
SOME_UNINITED_DATA[1] += 1;
}
writeln!(
serial0,
"RTC_FAST function located at {:p}",
function_in_rtc_ram as *const ()
)
.unwrap();
writeln!(serial0, "Result {}", function_in_rtc_ram()).unwrap();
loop {
function_in_ram(&mut serial0);
block!(timer0.wait()).unwrap();
}
}
#[ram]
fn function_in_ram(serial0: &mut Serial<UART0>) {
writeln!(serial0, "Hello world!").unwrap();
}
#[ram(rtc_fast)]
fn function_in_rtc_ram() -> u32 {
42
}

View File

@ -0,0 +1,7 @@
PROVIDE(level1_interrupt = DefaultHandler);
PROVIDE(level2_interrupt = DefaultHandler);
PROVIDE(level3_interrupt = DefaultHandler);
PROVIDE(level4_interrupt = DefaultHandler);
PROVIDE(level5_interrupt = DefaultHandler);
PROVIDE(level6_interrupt = DefaultHandler);
PROVIDE(level7_interrupt = DefaultHandler);

View File

@ -0,0 +1,163 @@
/* override entry point */
ENTRY(ESP32Reset)
/* reserved at the start of DRAM */
RESERVE_DRAM = 0x8000;
/* reserved at the start of the RTC memories for use by the ULP processor */
RESERVE_RTC_FAST = 0;
RESERVE_RTC_SLOW = 0;
/* define stack size for both cores */
STACK_SIZE = 8k;
/* Specify main memory areas */
MEMORY
{
vectors_seg ( RX ) : ORIGIN = 0x40370000 + RESERVE_DRAM, len = 1k
iram_seg ( RX ) : ORIGIN = 0x40370400 + RESERVE_DRAM, len = 328k - 0x400
dram_seg ( RW ) : ORIGIN = 0x3FC80000 + RESERVE_DRAM, len = 328k - RESERVE_DRAM
reserved_for_boot_seg : ORIGIN = 0x3FFDC200, len = 144k /* ???? SRAM1; reserved for static ROM usage; can be used for heap */
/* external flash
The 0x20 offset is a convenience for the app binary image generation.
Flash cache has 64KB pages. The .bin file which is flashed to the chip
has a 0x18 byte file header, and each segment has a 0x08 byte segment
header. Setting this offset makes it simple to meet the flash cache MMU's
constraint that (paddr % 64KB == vaddr % 64KB).)
*/
irom_seg ( RX ) : ORIGIN = 0x42000020, len = 4M - 0x20
drom_seg ( R ) : ORIGIN = 0x3C000020, len = 4M - 0x20
/* RTC fast memory (executable). Persists over deep sleep. Only for core 0 (PRO_CPU) */
rtc_fast_iram_seg(RWX) : ORIGIN = 0x600fe000, len = 8k
/* RTC fast memory (same block as above), viewed from data bus. Only for core 0 (PRO_CPU) */
rtc_fast_dram_seg(RW) : ORIGIN = 0x600fe000 + RESERVE_RTC_FAST, len = 8k - RESERVE_RTC_FAST
/* RTC slow memory (data accessible). Persists over deep sleep. */
rtc_slow_seg(RW) : ORIGIN = 0x50000000 + RESERVE_RTC_SLOW, len = 8k - RESERVE_RTC_SLOW
/* external memory, including data and text */
psram_seg(RWX) : ORIGIN = 0x3F500000, len = 0xA80000 /* ??? */
}
/* map generic regions to output sections */
INCLUDE "alias.x"
/* esp32 specific regions */
SECTIONS {
.rtc_fast.text : {
. = ALIGN(4);
*(.rtc_fast.literal .rtc_fast.text .rtc_fast.literal.* .rtc_fast.text.*)
} > rtc_fast_iram_seg AT > RODATA
/*
This section is required to skip rtc.text area because rtc_iram_seg and
rtc_data_seg are reflect the same address space on different buses.
*/
.rtc_fast.dummy (NOLOAD) :
{
_rtc_dummy_start = ABSOLUTE(.); /* needed to make section proper size */
. = SIZEOF(.rtc_fast.text);
_rtc_dummy_end = ABSOLUTE(.); /* needed to make section proper size */
} > rtc_fast_dram_seg
.rtc_fast.data :
{
. = ALIGN(4);
_rtc_fast_data_start = ABSOLUTE(.);
*(.rtc_fast.data .rtc_fast.data.*)
_rtc_fast_data_end = ABSOLUTE(.);
} > rtc_fast_dram_seg AT > RODATA
.rtc_fast.bss (NOLOAD) :
{
. = ALIGN(4);
_rtc_fast_bss_start = ABSOLUTE(.);
*(.rtc_fast.bss .rtc_fast.bss.*)
_rtc_fast_bss_end = ABSOLUTE(.);
} > rtc_fast_dram_seg
.rtc_fast.noinit (NOLOAD) :
{
. = ALIGN(4);
*(.rtc_fast.noinit .rtc_fast.noinit.*)
} > rtc_fast_dram_seg
.rtc_slow.text : {
. = ALIGN(4);
*(.rtc_slow.literal .rtc_slow.text .rtc_slow.literal.* .rtc_slow.text.*)
} > rtc_slow_seg AT > RODATA
.rtc_slow.data :
{
. = ALIGN(4);
_rtc_slow_data_start = ABSOLUTE(.);
*(.rtc_slow.data .rtc_slow.data.*)
_rtc_slow_data_end = ABSOLUTE(.);
} > rtc_slow_seg AT > RODATA
.rtc_slow.bss (NOLOAD) :
{
. = ALIGN(4);
_rtc_slow_bss_start = ABSOLUTE(.);
*(.rtc_slow.bss .rtc_slow.bss.*)
_rtc_slow_bss_end = ABSOLUTE(.);
} > rtc_slow_seg
.rtc_slow.noinit (NOLOAD) :
{
. = ALIGN(4);
*(.rtc_slow.noinit .rtc_slow.noinit.*)
} > rtc_slow_seg
.external.data :
{
_external_data_start = ABSOLUTE(.);
. = ALIGN(4);
*(.external.data .external.data.*)
_external_data_end = ABSOLUTE(.);
} > psram_seg AT > RODATA
.external.bss (NOLOAD) :
{
_external_bss_start = ABSOLUTE(.);
. = ALIGN(4);
*(.external.bss .external.bss.*)
_external_bss_end = ABSOLUTE(.);
} > psram_seg
.external.noinit (NOLOAD) :
{
. = ALIGN(4);
*(.external.noinit .external.noinit.*)
} > psram_seg
/* must be last segment using psram_seg */
.external_heap_start (NOLOAD) :
{
. = ALIGN (4);
_external_heap_start = ABSOLUTE(.);
} > psram_seg
}
_external_ram_start = ABSOLUTE(ORIGIN(psram_seg));
_external_ram_end = ABSOLUTE(ORIGIN(psram_seg)+LENGTH(psram_seg));
_heap_end = ABSOLUTE(ORIGIN(dram_seg))+LENGTH(dram_seg)+LENGTH(reserved_for_boot_seg) - 2*STACK_SIZE;
_text_heap_end = ABSOLUTE(ORIGIN(iram_seg)+LENGTH(iram_seg));
_external_heap_end = ABSOLUTE(ORIGIN(psram_seg)+LENGTH(psram_seg));
_stack_start_cpu1 = _heap_end;
_stack_end_cpu1 = _stack_start_cpu1 + STACK_SIZE;
_stack_start_cpu0 = _stack_end_cpu1;
_stack_end_cpu0 = _stack_start_cpu0 + STACK_SIZE;
EXTERN(DefaultHandler);
INCLUDE "device.x"

View File

@ -2,3 +2,5 @@ REGION_ALIAS("ROTEXT", irom_seg);
REGION_ALIAS("RWTEXT", iram_seg);
REGION_ALIAS("RODATA", drom_seg);
REGION_ALIAS("RWDATA", dram_seg);
PROVIDE( rom_config_instruction_cache_mode = 0x40001a1c );

View File

@ -1,4 +1,90 @@
#![no_std]
pub use embedded_hal as ehal;
pub use esp_hal_common::{pac, prelude, Delay, Serial, Timer};
pub use esp_hal_common::{pac, prelude, ram, Delay, Serial, Timer};
#[no_mangle]
extern "C" fn DefaultHandler(_level: u32, _interrupt: pac::Interrupt) {}
#[cfg(feature = "rt")]
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn configure_cpu_caches() {
// this is just the bare minimum we need to run code from flash
// consider implementing more advanced configurations
// see https://github.com/apache/incubator-nuttx/blob/master/arch/xtensa/src/esp32s3/esp32s3_start.c
extern "C" {
fn rom_config_instruction_cache_mode(
cfg_cache_size: u32,
cfg_cache_ways: u8,
cfg_cache_line_size: u8,
);
}
// ideally these should be configurable
const CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE: u32 = 0x4000; // ESP32S3_INSTRUCTION_CACHE_16KB
const CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS: u8 = 8; // ESP32S3_INSTRUCTION_CACHE_8WAYS
const CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE: u8 = 32; // ESP32S3_INSTRUCTION_CACHE_LINE_32B
// Configure the mode of instruction cache: cache size, cache line size.
rom_config_instruction_cache_mode(
CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE,
CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS,
CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE,
);
}
/// Function initializes ESP32S3 specific memories (RTC slow and fast) and
/// then calls original Reset function
///
/// ENTRY point is defined in memory.x
/// *Note: the pre_init function is called in the original reset handler
/// after the initializations done in this function*
#[cfg(feature = "rt")]
#[doc(hidden)]
#[no_mangle]
#[link_section = ".rwtext"]
pub unsafe extern "C" fn ESP32Reset() -> ! {
configure_cpu_caches();
// These symbols come from `memory.x`
extern "C" {
static mut _rtc_fast_bss_start: u32;
static mut _rtc_fast_bss_end: u32;
static mut _rtc_slow_bss_start: u32;
static mut _rtc_slow_bss_end: u32;
static mut _stack_end_cpu0: u32;
}
// set stack pointer to end of memory: no need to retain stack up to this point
xtensa_lx::set_stack_pointer(&mut _stack_end_cpu0);
// copying data from flash to various data segments is done by the bootloader
// initialization to zero needs to be done by the application
// Initialize RTC RAM
xtensa_lx_rt::zero_bss(&mut _rtc_fast_bss_start, &mut _rtc_fast_bss_end);
xtensa_lx_rt::zero_bss(&mut _rtc_slow_bss_start, &mut _rtc_slow_bss_end);
// continue with default reset handler
xtensa_lx_rt::Reset();
}
/// The ESP32 has a first stage bootloader that handles loading program data
/// into the right place therefore we skip loading it again.
#[doc(hidden)]
#[no_mangle]
#[rustfmt::skip]
pub extern "Rust" fn __init_data() -> bool {
false
}
fn _gpio_intr_enable(int_enable: bool, nmi_enable: bool) -> u8 {
int_enable as u8
| ((nmi_enable as u8) << 1)
| (int_enable as u8) << 2
| ((nmi_enable as u8) << 3)
}