UART: make async operations cancellation-safe, update others for consistency (#3142)

* Make async operations cancellable

* Handle thresholds

* Fix written amount calculation

* Fix waiting for events

* Don't return 0 bytes, don't modify TX threshold

* Add read_exact implementation

* Fix tests

* Add tests

* Inline constant into the default values

* Make FIFO config stable

* Fix doc links

* Changelog

* Remove duplicate changelog entries

* Check for RX error

* Fix write_async not recalculating available space

* Fix ESP32 timeout loop

* Check the unmasked interrupt bits to actually detect errors

* Improve naming

* Change async handler to not clear interrupt status

* Test and fix case where write_async returned Ok(0)

* Tweak docs

* Address review feedback

* Use embedded_io to fill buffer in test

* Rename
This commit is contained in:
Dániel Buga 2025-02-20 09:19:55 +01:00 committed by GitHub
parent 90cc8b219c
commit ff2a46dbc8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 712 additions and 330 deletions

View File

@ -11,6 +11,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- SPI: Added support for 3-wire SPI (#2919)
- UART: Add separate config for Rx and Tx (#2965)
- UART: `read_exact_async` (unstable) (#3142)
- UART: `TxConfig::fifo_empty_threshold` (#3142)
- Added accessor methods to config structs (#3011)
- `esp_hal::time::{Rate, Duration, Instant}` (#3083)
- Async support for ADC oneshot reads for ESP32C2, ESP32C3, ESP32C6 and ESP32H2 (#2925, #3082)
@ -24,11 +26,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- RMT: `TxChannelConfig` and `RxChannelConfig` now support the builder-lite pattern (#2978)
- RMT: Some fields of `TxChannelConfig` and `RxChannelConfig` are now `gpio::Level`-valued instead of `bool` (#2989)
- RMT: The `PulseCode` trait now uses `gpio::Level` to specify output levels instead of `bool` (#2989)
- Uart `write_bytes` and `read_bytes` are now blocking and return the number of bytes written/read (#2882)
- Uart `read_bytes` is now blocking returns the number of bytes read (#2882)
- Uart `flush` is now blocking (#2882)
- Uart errors have been split into `RxError` and `TxError`. A combined `IoError` has been created for embedded-io. (#3138)
- `{Uart, UartTx}::flush()` is now fallible. (#3138)
- Removed `embedded-hal-nb` traits (#2882)
- `timer::wait` is now blocking (#2882)
- By default, set `tx_idle_num` to 0 so that bytes written to TX FIFO are always immediately transmitted. (#2859)
@ -46,12 +43,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- The `system::RadioClockController` trait has been replaced by the `clock::RadioClockController` struct. (#3100)
- The `Cpu` struct and contents of the `reset` and `cpu_control` modules have been moved into `cpu`. (#3099)
- The `software_reset_cpu` now takes which CPU to reset as parameter. (#3099)
- The `Cpu` struct and contents of the `reset` and `cpu_control` modules have been moved into `cpu`. (#)
- The `software_reset_cpu` now takes which CPU to reset as parameter. (#)
- `read_bytes` and `write_bytes` methods on drivers have been renamed to `read` and `write` (#3137)
- `Uart::write` and `Uart::read` are now blocking and return the number of bytes written/read (#2882)
- `Uart::flush` is now blocking (#2882)
- `Uart::split` and the respective split halves have been marked as unstable (#3137)
- Uart errors have been split into `RxError` and `TxError`. A combined `IoError` has been created for embedded-io. (#3138)
- `{Uart, UartTx}::flush()` is now fallible. (#3138)
- `Uart::{read_async, write_async}` are now cancellation-safe (#3142)
- I2C: Async functions are postfixed with `_async`, non-async functions are available in async-mode (#3056)

File diff suppressed because it is too large Load Diff

View File

@ -77,7 +77,7 @@ fn main() -> ! {
}
let mut buf = [0u8; 1];
if let Ok(_) = uart0.read_buffered_bytes(&mut buf) {
if let Ok(_) = uart0.read_buffered(&mut buf) {
if buf[0] == b'r' {
software_reset();
}

View File

@ -82,13 +82,7 @@ mod tests {
// Calls to read may not fill the buffer, wait until read returns 0
let mut buffer = [0; BUF_SIZE];
let mut n = 0;
loop {
match ctx.uart.read(&mut buffer[n..]).unwrap() {
0 => break,
cnt => n += cnt,
};
}
embedded_io::Read::read_exact(&mut ctx.uart, &mut buffer).unwrap();
assert_eq!(data, buffer);
}

View File

@ -36,7 +36,7 @@ mod tests {
.unwrap()
.with_tx(tx);
tx.flush();
tx.flush().unwrap();
tx.write(&[0x42]).unwrap();
let mut byte = [0u8; 1];
rx.read(&mut byte).unwrap();

View File

@ -42,7 +42,7 @@ mod tests {
fn test_send_receive(mut ctx: Context) {
let byte = [0x42];
ctx.tx.flush();
ctx.tx.flush().unwrap();
ctx.tx.write(&byte).unwrap();
let mut buf = [0u8; 1];
ctx.rx.read(&mut buf).unwrap();
@ -55,17 +55,10 @@ mod tests {
let bytes = [0x42, 0x43, 0x44];
let mut buf = [0u8; 3];
ctx.tx.flush();
ctx.tx.flush().unwrap();
ctx.tx.write(&bytes).unwrap();
// Calls to read may not fill the buffer, wait until read returns 0
let mut n = 0;
loop {
match ctx.rx.read(&mut buf[n..]).unwrap() {
0 => break,
cnt => n += cnt,
};
}
embedded_io::Read::read_exact(&mut ctx.rx, &mut buf).unwrap();
assert_eq!(buf, bytes);
}

View File

@ -1,7 +1,7 @@
//! UART TX/RX Async Test
//% CHIPS: esp32 esp32c2 esp32c3 esp32c6 esp32h2 esp32s2 esp32s3
//% FEATURES: unstable
//% FEATURES: unstable embassy
#![no_std]
#![no_main]
@ -20,6 +20,16 @@ struct Context {
#[cfg(test)]
#[embedded_test::tests(default_timeout = 3, executor = hil_test::Executor::new())]
mod tests {
use embassy_futures::{
join::join,
select::{select, Either},
};
use embassy_time::{Duration, Timer};
use esp_hal::{
timer::timg::TimerGroup,
uart::{RxConfig, RxError},
};
use super::*;
#[init]
@ -28,6 +38,9 @@ mod tests {
let (rx, tx) = hil_test::common_test_pins!(peripherals);
let timg0 = TimerGroup::new(peripherals.TIMG0);
esp_hal_embassy::init(timg0.timer0);
let tx = UartTx::new(peripherals.UART0, uart::Config::default())
.unwrap()
.with_tx(tx)
@ -41,7 +54,7 @@ mod tests {
}
#[test]
async fn test_send_receive(mut ctx: Context) {
async fn test_write_read(mut ctx: Context) {
let byte = [0x42];
let mut read = [0u8; 1];
@ -51,4 +64,133 @@ mod tests {
assert_eq!(read, byte);
}
#[test]
async fn write_async_does_not_return_0(mut ctx: Context) {
let bytes = [0; 200];
for i in 0..50 {
let written = ctx.tx.write_async(&bytes).await.unwrap();
assert_ne!(written, 0, "Iteration {}", i);
}
}
#[test]
async fn rx_overflow_is_detected(mut ctx: Context) {
let mut to_send: &[u8] = &[0; 250];
let mut read = [0u8; 1];
while !to_send.is_empty() {
let written = ctx.tx.write_async(to_send).await.unwrap();
to_send = &to_send[written..];
}
ctx.tx.flush_async().await.unwrap();
// The read is supposed to return an error because the FIFO is just 128 bytes
// long.
let res = ctx.rx.read_async(&mut read).await;
assert!(matches!(res, Err(RxError::FifoOverflowed)), "{:?}", res);
}
#[test]
async fn read_returns_with_partial_data_if_read_times_out(mut ctx: Context) {
let mut data = [0u8; 16];
// We write 4 bytes, but read 16. This should return 4 bytes because the default
// RX timeout is 10 symbols' worth of time.
let (read, _) = join(ctx.rx.read_async(&mut data), async {
ctx.tx.write_async(&[1, 2, 3, 4]).await.unwrap();
ctx.tx.flush_async().await.unwrap();
})
.await;
assert_eq!(read, Ok(4));
assert_eq!(&data[..4], &[1, 2, 3, 4]);
}
#[test]
async fn read_exact_does_not_return_partial_data(mut ctx: Context) {
let mut data = [0u8; 8];
// Write 4 bytes
ctx.tx.write_async(&[1, 2, 3, 4]).await.unwrap();
ctx.tx.flush_async().await.unwrap();
// read_exact should either read exactly 8 bytes, or time out.
let should_timeout = select(
// Wait for 8 bytes or FIFO threshold which is more.
ctx.rx.read_exact_async(&mut data),
// We expect to time out
Timer::after(Duration::from_secs(1)),
)
.await;
assert!(matches!(should_timeout, Either::Second(_)));
}
#[test]
async fn read_does_not_resolve_when_there_is_not_enough_data_and_no_timeout(mut ctx: Context) {
let mut data = [0u8; 8];
ctx.rx
.apply_config(&uart::Config::default().with_rx(RxConfig::default().with_timeout_none()))
.unwrap();
// Default RX FIFO threshold is higher than 8 bytes, so we should be able to
// read all 8 bytes in one go.
let (should_timeout, _) = join(
select(
// Wait for 8 bytes or FIFO threshold which is more.
ctx.rx.read_async(&mut data),
// We expect to time out
Timer::after(Duration::from_secs(1)),
),
async {
// Write 4 bytes
ctx.tx.write_async(&[1, 2, 3, 4]).await.unwrap();
ctx.tx.flush_async().await.unwrap();
},
)
.await;
assert!(matches!(should_timeout, Either::Second(_)));
}
#[test]
async fn read_resolves_when_buffer_is_full(mut ctx: Context) {
let mut data = [0u8; 8];
ctx.rx
.apply_config(&uart::Config::default().with_rx(RxConfig::default().with_timeout_none()))
.unwrap();
// Default RX FIFO threshold is higher than 8 bytes, so we should be able to
// read all 8 bytes in one go.
let (read, _) = join(ctx.rx.read_async(&mut data), async {
ctx.tx.write_async(&[1, 2, 3, 4, 5, 6, 7, 8]).await.unwrap();
ctx.tx.flush_async().await.unwrap();
})
.await;
assert_eq!(read, Ok(8));
assert_eq!(&data, &[1, 2, 3, 4, 5, 6, 7, 8]);
}
#[test]
async fn cancelling_read_does_not_drop_data(mut ctx: Context) {
let mut data = [0u8; 16];
let should_be_tx = select(ctx.rx.read_async(&mut data), async {
ctx.tx.write_async(&[1, 2, 3]).await.unwrap();
ctx.tx.flush_async().await.unwrap();
})
.await;
// Default RX FIFO threshold should be more than 3 bytes, so we don't expect
// read to become ready.
assert!(matches!(should_be_tx, Either::Second(_)));
let read = ctx.rx.read_async(&mut data).await;
assert_eq!(read, Ok(3));
assert_eq!(&data[..3], &[1, 2, 3]);
}
}