Scott Mabin be184a552d
critical_section implementations & esp_backtrace (#151)
* CS impl

* use CS Mutex in C3 examples

* use CS Mutex in S2 examples

* Update esp32 example

* run fmt

* Update S3 examples

* Remove uses of unsafe where no longer required

* use esp_backtrace in examples

* fix import & fmt once more

* Bump MSRV to 1.60.0

Co-authored-by: Jesse Braham <jesse@beta7.io>
2022-08-22 20:02:28 +01:00

106 lines
2.9 KiB
Rust

//! This shows how to use RTC memory.
//! RTC memory is retained during resets and during most sleep modes.
//! Initialized memory is always re-initialized on startup.
//! Uninitialzed memory isn't initialized on startup and can be used to keep
//! data during resets. Zeroed memory is initialized to zero on startup.
//! We can also run code from RTC memory.
#![no_std]
#![no_main]
use core::fmt::Write;
use esp32_hal::{
clock::ClockControl,
macros::ram,
pac::{Peripherals, UART0},
prelude::*,
timer::TimerGroup,
Serial,
};
use esp_backtrace as _;
use nb::block;
use xtensa_lx_rt::entry;
#[ram(rtc_fast)]
static mut SOME_INITED_DATA: [u8; 2] = [0xaa, 0xbb];
#[ram(rtc_fast, uninitialized)]
static mut SOME_UNINITED_DATA: [u8; 2] = [0; 2];
#[ram(rtc_fast, zeroed)]
static mut SOME_ZEROED_DATA: [u8; 8] = [0; 8];
#[entry]
fn main() -> ! {
let peripherals = Peripherals::take().unwrap();
let system = peripherals.DPORT.split();
let clocks = ClockControl::boot_defaults(system.clock_control).freeze();
let timer_group0 = TimerGroup::new(peripherals.TIMG0, &clocks);
let mut timer0 = timer_group0.timer0;
let mut wdt = timer_group0.wdt;
let mut serial0 = Serial::new(peripherals.UART0);
// Disable MWDT flash boot protection
wdt.disable();
// The RWDT flash boot protection remains enabled and it being triggered is part
// of the example
timer0.start(1u64.secs());
writeln!(
serial0,
"IRAM function located at {:p}",
function_in_ram as *const ()
)
.unwrap();
unsafe {
writeln!(serial0, "SOME_INITED_DATA {:x?}", SOME_INITED_DATA).unwrap();
writeln!(serial0, "SOME_UNINITED_DATA {:x?}", SOME_UNINITED_DATA).unwrap();
writeln!(serial0, "SOME_ZEROED_DATA {:x?}", SOME_ZEROED_DATA).unwrap();
SOME_INITED_DATA[0] = 0xff;
SOME_ZEROED_DATA[0] = 0xff;
writeln!(serial0, "SOME_INITED_DATA {:x?}", SOME_INITED_DATA).unwrap();
writeln!(serial0, "SOME_UNINITED_DATA {:x?}", SOME_UNINITED_DATA).unwrap();
writeln!(serial0, "SOME_ZEROED_DATA {:x?}", SOME_ZEROED_DATA).unwrap();
if SOME_UNINITED_DATA[0] != 0 {
SOME_UNINITED_DATA[0] = 0;
SOME_UNINITED_DATA[1] = 0;
}
if SOME_UNINITED_DATA[1] == 0xff {
SOME_UNINITED_DATA[1] = 0;
}
writeln!(serial0, "Counter {}", SOME_UNINITED_DATA[1]).unwrap();
SOME_UNINITED_DATA[1] += 1;
}
writeln!(
serial0,
"RTC_FAST function located at {:p}",
function_in_rtc_ram as *const ()
)
.unwrap();
writeln!(serial0, "Result {}", function_in_rtc_ram()).unwrap();
loop {
function_in_ram(&mut serial0);
block!(timer0.wait()).unwrap();
}
}
#[ram]
fn function_in_ram(serial0: &mut Serial<UART0>) {
writeln!(serial0, "Hello world!").unwrap();
}
#[ram(rtc_fast)]
fn function_in_rtc_ram() -> u32 {
42
}