Chayim Refael Friedman 4049c3b6a9 Support AsyncFnX traits
Only in calls, because to support them in bounds we need support from Chalk. However we don't yet report error from bounds anyway, so this is less severe.

The returned future is shown in its name within inlay hints instead of as a nicer `impl Future`, but that can wait for another PR.
2024-12-03 21:26:26 +02:00

1095 lines
43 KiB
Rust

//! Unification and canonicalization logic.
use std::{fmt, iter, mem};
use chalk_ir::{
cast::Cast, fold::TypeFoldable, interner::HasInterner, zip::Zip, CanonicalVarKind, FloatTy,
IntTy, TyVariableKind, UniverseIndex,
};
use chalk_solve::infer::ParameterEnaVariableExt;
use either::Either;
use ena::unify::UnifyKey;
use hir_def::{lang_item::LangItem, AdtId};
use hir_expand::name::Name;
use intern::sym;
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use triomphe::Arc;
use super::{InferOk, InferResult, InferenceContext, TypeError};
use crate::{
consteval::unknown_const, db::HirDatabase, fold_generic_args, fold_tys_and_consts,
to_chalk_trait_id, traits::FnTrait, AliasEq, AliasTy, BoundVar, Canonical, Const, ConstValue,
DebruijnIndex, DomainGoal, GenericArg, GenericArgData, Goal, GoalData, Guidance, InEnvironment,
InferenceVar, Interner, Lifetime, OpaqueTyId, ParamKind, ProjectionTy, ProjectionTyExt, Scalar,
Solution, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt, TyKind, VariableKind,
WhereClause,
};
impl InferenceContext<'_> {
pub(super) fn canonicalize<T>(&mut self, t: T) -> Canonical<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
self.table.canonicalize(t)
}
pub(super) fn clauses_for_self_ty(
&mut self,
self_ty: InferenceVar,
) -> SmallVec<[WhereClause; 4]> {
self.table.resolve_obligations_as_possible();
let root = self.table.var_unification_table.inference_var_root(self_ty);
let pending_obligations = mem::take(&mut self.table.pending_obligations);
let obligations = pending_obligations
.iter()
.filter_map(|obligation| match obligation.value.value.goal.data(Interner) {
GoalData::DomainGoal(DomainGoal::Holds(clause)) => {
let ty = match clause {
WhereClause::AliasEq(AliasEq {
alias: AliasTy::Projection(projection),
..
}) => projection.self_type_parameter(self.db),
WhereClause::Implemented(trait_ref) => {
trait_ref.self_type_parameter(Interner)
}
WhereClause::TypeOutlives(to) => to.ty.clone(),
_ => return None,
};
let uncanonical =
chalk_ir::Substitute::apply(&obligation.free_vars, ty, Interner);
if matches!(
self.resolve_ty_shallow(&uncanonical).kind(Interner),
TyKind::InferenceVar(iv, TyVariableKind::General) if *iv == root,
) {
Some(chalk_ir::Substitute::apply(
&obligation.free_vars,
clause.clone(),
Interner,
))
} else {
None
}
}
_ => None,
})
.collect();
self.table.pending_obligations = pending_obligations;
obligations
}
}
#[derive(Debug, Clone)]
pub(crate) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
pub(crate) value: Canonical<T>,
free_vars: Vec<GenericArg>,
}
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
pub(crate) fn apply_solution(
&self,
ctx: &mut InferenceTable<'_>,
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution::from_iter(
Interner,
solution.binders.iter(Interner).map(|k| match &k.kind {
VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(Interner),
VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(Interner),
VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(Interner),
// Chalk can sometimes return new lifetime variables. We just replace them by errors
// for now.
VariableKind::Lifetime => ctx.new_lifetime_var().cast(Interner),
VariableKind::Const(ty) => ctx.new_const_var(ty.clone()).cast(Interner),
}),
);
for (i, v) in solution.value.iter(Interner).enumerate() {
let var = &self.free_vars[i];
if let Some(ty) = v.ty(Interner) {
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), Interner));
ctx.unify(var.assert_ty_ref(Interner), &ty);
} else {
let _ = ctx.try_unify(var, &new_vars.apply(v.clone(), Interner));
}
}
}
}
/// Check if types unify.
///
/// Note that we consider placeholder types to unify with everything.
/// This means that there may be some unresolved goals that actually set bounds for the placeholder
/// type for the types to unify. For example `Option<T>` and `Option<U>` unify although there is
/// unresolved goal `T = U`.
pub fn could_unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
unify(db, env, tys).is_some()
}
/// Check if types unify eagerly making sure there are no unresolved goals.
///
/// This means that placeholder types are not considered to unify if there are any bounds set on
/// them. For example `Option<T>` and `Option<U>` do not unify as we cannot show that `T = U`
pub fn could_unify_deeply(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
let ty1_with_vars = table.normalize_associated_types_in(ty1_with_vars);
let ty2_with_vars = table.normalize_associated_types_in(ty2_with_vars);
table.resolve_obligations_as_possible();
table.propagate_diverging_flag();
let ty1_with_vars = table.resolve_completely(ty1_with_vars);
let ty2_with_vars = table.resolve_completely(ty2_with_vars);
table.unify_deeply(&ty1_with_vars, &ty2_with_vars)
}
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = make_substitutions(tys, &mut table);
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let find_var = |iv| {
vars.iter(Interner).position(|v| match v.data(Interner) {
GenericArgData::Ty(ty) => ty.inference_var(Interner),
GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
GenericArgData::Const(c) => c.inference_var(Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)),
};
Some(Substitution::from_iter(
Interner,
vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)),
))
}
fn make_substitutions(
tys: &chalk_ir::Canonical<(chalk_ir::Ty<Interner>, chalk_ir::Ty<Interner>)>,
table: &mut InferenceTable<'_>,
) -> chalk_ir::Substitution<Interner> {
Substitution::from_iter(
Interner,
tys.binders.iter(Interner).map(|it| match &it.kind {
chalk_ir::VariableKind::Ty(_) => table.new_type_var().cast(Interner),
// FIXME: maybe wrong?
chalk_ir::VariableKind::Lifetime => table.new_type_var().cast(Interner),
chalk_ir::VariableKind::Const(ty) => table.new_const_var(ty.clone()).cast(Interner),
}),
)
}
bitflags::bitflags! {
#[derive(Default, Clone, Copy)]
pub(crate) struct TypeVariableFlags: u8 {
const DIVERGING = 1 << 0;
const INTEGER = 1 << 1;
const FLOAT = 1 << 2;
}
}
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
pub(crate) db: &'a dyn HirDatabase,
pub(crate) trait_env: Arc<TraitEnvironment>,
pub(crate) tait_coercion_table: Option<FxHashMap<OpaqueTyId, Ty>>,
var_unification_table: ChalkInferenceTable,
type_variable_table: SmallVec<[TypeVariableFlags; 16]>,
pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
/// Double buffer used in [`Self::resolve_obligations_as_possible`] to cut down on
/// temporary allocations.
resolve_obligations_buffer: Vec<Canonicalized<InEnvironment<Goal>>>,
}
pub(crate) struct InferenceTableSnapshot {
var_table_snapshot: chalk_solve::infer::InferenceSnapshot<Interner>,
type_variable_table: SmallVec<[TypeVariableFlags; 16]>,
pending_obligations: Vec<Canonicalized<InEnvironment<Goal>>>,
}
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
db,
trait_env,
tait_coercion_table: None,
var_unification_table: ChalkInferenceTable::new(),
type_variable_table: SmallVec::new(),
pending_obligations: Vec::new(),
resolve_obligations_buffer: Vec::new(),
}
}
/// Chalk doesn't know about the `diverging` flag, so when it unifies two
/// type variables of which one is diverging, the chosen root might not be
/// diverging and we have no way of marking it as such at that time. This
/// function goes through all type variables and make sure their root is
/// marked as diverging if necessary, so that resolving them gives the right
/// result.
pub(super) fn propagate_diverging_flag(&mut self) {
for i in 0..self.type_variable_table.len() {
if !self.type_variable_table[i].contains(TypeVariableFlags::DIVERGING) {
continue;
}
let v = InferenceVar::from(i as u32);
let root = self.var_unification_table.inference_var_root(v);
self.modify_type_variable_flag(root, |f| {
*f |= TypeVariableFlags::DIVERGING;
});
}
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.modify_type_variable_flag(iv, |f| {
f.set(TypeVariableFlags::DIVERGING, diverging);
});
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
let is_diverging = self
.type_variable_table
.get(iv.index() as usize)
.map_or(false, |data| data.contains(TypeVariableFlags::DIVERGING));
if is_diverging {
return TyKind::Never.intern(Interner);
}
match kind {
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(Interner)
}
pub(crate) fn canonicalize_with_free_vars<T>(&mut self, t: T) -> Canonicalized<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
let result = self.var_unification_table.canonicalize(Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
pub(crate) fn canonicalize<T>(&mut self, t: T) -> Canonical<T>
where
T: TypeFoldable<Interner> + HasInterner<Interner = Interner>,
{
// try to resolve obligations before canonicalizing, since this might
// result in new knowledge about variables
self.resolve_obligations_as_possible();
self.var_unification_table.canonicalize(Interner, t).quantified
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
pub(crate) fn normalize_associated_types_in<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fold_tys_and_consts(
ty,
|e, _| match e {
Either::Left(ty) => Either::Left(match ty.kind(Interner) {
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
self.normalize_projection_ty(proj_ty.clone())
}
_ => ty,
}),
Either::Right(c) => Either::Right(match &c.data(Interner).value {
chalk_ir::ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::UnevaluatedConst(c_id, subst) => {
// FIXME: Ideally here we should do everything that we do with type alias, i.e. adding a variable
// and registering an obligation. But it needs chalk support, so we handle the most basic
// case (a non associated const without generic parameters) manually.
if subst.len(Interner) == 0 {
if let Ok(eval) = self.db.const_eval(*c_id, subst.clone(), None) {
eval
} else {
unknown_const(c.data(Interner).ty.clone())
}
} else {
unknown_const(c.data(Interner).ty.clone())
}
}
_ => c,
},
_ => c,
}),
},
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let var = self.new_type_var();
let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() };
let obligation = alias_eq.cast(Interner);
self.register_obligation(obligation);
var
}
fn modify_type_variable_flag<F>(&mut self, var: InferenceVar, cb: F)
where
F: FnOnce(&mut TypeVariableFlags),
{
let idx = var.index() as usize;
if self.type_variable_table.len() <= idx {
self.extend_type_variable_table(idx);
}
if let Some(f) = self.type_variable_table.get_mut(idx) {
cb(f);
}
}
fn extend_type_variable_table(&mut self, to_index: usize) {
let count = to_index - self.type_variable_table.len() + 1;
self.type_variable_table.extend(iter::repeat(TypeVariableFlags::default()).take(count));
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
// Chalk might have created some type variables for its own purposes that we don't know about...
self.extend_type_variable_table(var.index() as usize);
assert_eq!(var.index() as usize, self.type_variable_table.len() - 1);
let flags = self.type_variable_table.get_mut(var.index() as usize).unwrap();
if diverging {
*flags |= TypeVariableFlags::DIVERGING;
}
if matches!(kind, TyVariableKind::Integer) {
*flags |= TypeVariableFlags::INTEGER;
} else if matches!(kind, TyVariableKind::Float) {
*flags |= TypeVariableFlags::FLOAT;
}
var.to_ty_with_kind(Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
var.to_const(Interner, ty)
}
pub(crate) fn new_lifetime_var(&mut self) -> Lifetime {
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
var.to_lifetime(Interner)
}
pub(crate) fn resolve_with_fallback<T>(
&mut self,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback)
}
pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind<Interner>]) -> Substitution {
Substitution::from_iter(
Interner,
binders.iter().map(|kind| {
let param_infer_var =
kind.map_ref(|&ui| self.var_unification_table.new_variable(ui));
param_infer_var.to_generic_arg(Interner)
}),
)
}
pub(crate) fn instantiate_canonical<T>(&mut self, canonical: Canonical<T>) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner> + std::fmt::Debug,
{
let subst = self.fresh_subst(canonical.binders.as_slice(Interner));
subst.apply(canonical.value, Interner)
}
fn resolve_with_fallback_inner<T>(
&mut self,
var_stack: &mut Vec<InferenceVar>,
t: T,
fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
t.fold_with(
&mut resolve::Resolver { table: self, var_stack, fallback },
DebruijnIndex::INNERMOST,
)
}
pub(crate) fn resolve_completely<T>(&mut self, t: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
self.resolve_with_fallback(t, &|_, _, d, _| d)
}
/// Apply a fallback to unresolved scalar types. Integer type variables and float type
/// variables are replaced with i32 and f64, respectively.
///
/// This method is only intended to be called just before returning inference results (i.e. in
/// `InferenceContext::resolve_all()`).
///
/// FIXME: This method currently doesn't apply fallback to unconstrained general type variables
/// whereas rustc replaces them with `()` or `!`.
pub(super) fn fallback_if_possible(&mut self) {
let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner);
let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner);
let scalar_vars: Vec<_> = self
.type_variable_table
.iter()
.enumerate()
.filter_map(|(index, flags)| {
let kind = if flags.contains(TypeVariableFlags::INTEGER) {
TyVariableKind::Integer
} else if flags.contains(TypeVariableFlags::FLOAT) {
TyVariableKind::Float
} else {
return None;
};
// FIXME: This is not really the nicest way to get `InferenceVar`s. Can we get them
// without directly constructing them from `index`?
let var = InferenceVar::from(index as u32).to_ty(Interner, kind);
Some(var)
})
.collect();
for var in scalar_vars {
let maybe_resolved = self.resolve_ty_shallow(&var);
if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) {
let fallback = match kind {
TyVariableKind::Integer => &int_fallback,
TyVariableKind::Float => &float_fallback,
TyVariableKind::General => unreachable!(),
};
self.unify(&var, fallback);
}
}
}
/// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that.
#[tracing::instrument(skip_all)]
pub(crate) fn unify<T: ?Sized + Zip<Interner>>(&mut self, ty1: &T, ty2: &T) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
self.register_infer_ok(result);
true
}
/// Unify two relatable values (e.g. `Ty`) and check whether trait goals which arise from that could be fulfilled
pub(crate) fn unify_deeply<T: ?Sized + Zip<Interner>>(&mut self, ty1: &T, ty2: &T) -> bool {
let result = match self.try_unify(ty1, ty2) {
Ok(r) => r,
Err(_) => return false,
};
result.goals.iter().all(|goal| {
let canonicalized = self.canonicalize_with_free_vars(goal.clone());
self.try_resolve_obligation(&canonicalized).is_some()
})
}
/// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the
/// caller needs to deal with them.
pub(crate) fn try_unify<T: ?Sized + Zip<Interner>>(
&mut self,
t1: &T,
t2: &T,
) -> InferResult<()> {
match self.var_unification_table.relate(
Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
t1,
t2,
) {
Ok(result) => Ok(InferOk { goals: result.goals, value: () }),
Err(chalk_ir::NoSolution) => Err(TypeError),
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.resolve_obligations_as_possible();
self.var_unification_table.normalize_ty_shallow(Interner, ty).unwrap_or_else(|| ty.clone())
}
pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot {
let var_table_snapshot = self.var_unification_table.snapshot();
let type_variable_table = self.type_variable_table.clone();
let pending_obligations = self.pending_obligations.clone();
InferenceTableSnapshot { var_table_snapshot, pending_obligations, type_variable_table }
}
#[tracing::instrument(skip_all)]
pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot) {
self.var_unification_table.rollback_to(snapshot.var_table_snapshot);
self.type_variable_table = snapshot.type_variable_table;
self.pending_obligations = snapshot.pending_obligations;
}
#[tracing::instrument(skip_all)]
pub(crate) fn run_in_snapshot<T>(&mut self, f: impl FnOnce(&mut InferenceTable<'_>) -> T) -> T {
let snapshot = self.snapshot();
let result = f(self);
self.rollback_to(snapshot);
result
}
/// Checks an obligation without registering it. Useful mostly to check
/// whether a trait *might* be implemented before deciding to 'lock in' the
/// choice (during e.g. method resolution or deref).
pub(crate) fn try_obligation(&mut self, goal: Goal) -> Option<Solution> {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
let canonicalized = self.canonicalize(in_env);
self.db.trait_solve(self.trait_env.krate, self.trait_env.block, canonicalized)
}
pub(crate) fn register_obligation(&mut self, goal: Goal) {
let in_env = InEnvironment::new(&self.trait_env.env, goal);
self.register_obligation_in_env(in_env)
}
fn register_obligation_in_env(&mut self, goal: InEnvironment<Goal>) {
let canonicalized = self.canonicalize_with_free_vars(goal);
let solution = self.try_resolve_obligation(&canonicalized);
if matches!(solution, Some(Solution::Ambig(_))) {
self.pending_obligations.push(canonicalized);
}
}
pub(crate) fn register_infer_ok<T>(&mut self, infer_ok: InferOk<T>) {
infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal));
}
pub(crate) fn resolve_obligations_as_possible(&mut self) {
let _span = tracing::info_span!("resolve_obligations_as_possible").entered();
let mut changed = true;
let mut obligations = mem::take(&mut self.resolve_obligations_buffer);
while mem::take(&mut changed) {
mem::swap(&mut self.pending_obligations, &mut obligations);
for canonicalized in obligations.drain(..) {
if !self.check_changed(&canonicalized) {
self.pending_obligations.push(canonicalized);
continue;
}
changed = true;
let uncanonical = chalk_ir::Substitute::apply(
&canonicalized.free_vars,
canonicalized.value.value,
Interner,
);
self.register_obligation_in_env(uncanonical);
}
}
self.resolve_obligations_buffer = obligations;
self.resolve_obligations_buffer.clear();
}
pub(crate) fn fudge_inference<T: TypeFoldable<Interner>>(
&mut self,
f: impl FnOnce(&mut Self) -> T,
) -> T {
use chalk_ir::fold::TypeFolder;
#[derive(chalk_derive::FallibleTypeFolder)]
#[has_interner(Interner)]
struct VarFudger<'a, 'b> {
table: &'a mut InferenceTable<'b>,
highest_known_var: InferenceVar,
}
impl TypeFolder<Interner> for VarFudger<'_, '_> {
fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn fold_inference_ty(
&mut self,
var: chalk_ir::InferenceVar,
kind: TyVariableKind,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Ty<Interner> {
if var < self.highest_known_var {
var.to_ty(Interner, kind)
} else {
self.table.new_type_var()
}
}
fn fold_inference_lifetime(
&mut self,
var: chalk_ir::InferenceVar,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Lifetime<Interner> {
if var < self.highest_known_var {
var.to_lifetime(Interner)
} else {
self.table.new_lifetime_var()
}
}
fn fold_inference_const(
&mut self,
ty: chalk_ir::Ty<Interner>,
var: chalk_ir::InferenceVar,
_outer_binder: chalk_ir::DebruijnIndex,
) -> chalk_ir::Const<Interner> {
if var < self.highest_known_var {
var.to_const(Interner, ty)
} else {
self.table.new_const_var(ty)
}
}
}
let snapshot = self.snapshot();
let highest_known_var = self.new_type_var().inference_var(Interner).expect("inference_var");
let result = f(self);
self.rollback_to(snapshot);
result
.fold_with(&mut VarFudger { table: self, highest_known_var }, DebruijnIndex::INNERMOST)
}
/// This checks whether any of the free variables in the `canonicalized`
/// have changed (either been unified with another variable, or with a
/// value). If this is not the case, we don't need to try to solve the goal
/// again -- it'll give the same result as last time.
fn check_changed(&mut self, canonicalized: &Canonicalized<InEnvironment<Goal>>) -> bool {
canonicalized.free_vars.iter().any(|var| {
let iv = match var.data(Interner) {
GenericArgData::Ty(ty) => ty.inference_var(Interner),
GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
GenericArgData::Const(c) => c.inference_var(Interner),
}
.expect("free var is not inference var");
if self.var_unification_table.probe_var(iv).is_some() {
return true;
}
let root = self.var_unification_table.inference_var_root(iv);
iv != root
})
}
fn try_resolve_obligation(
&mut self,
canonicalized: &Canonicalized<InEnvironment<Goal>>,
) -> Option<chalk_solve::Solution<Interner>> {
let solution = self.db.trait_solve(
self.trait_env.krate,
self.trait_env.block,
canonicalized.value.clone(),
);
match &solution {
Some(Solution::Unique(canonical_subst)) => {
canonicalized.apply_solution(
self,
Canonical {
binders: canonical_subst.binders.clone(),
// FIXME: handle constraints
value: canonical_subst.value.subst.clone(),
},
);
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
canonicalized.apply_solution(self, substs.clone());
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
}
}
solution
}
pub(crate) fn callable_sig(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(Option<FnTrait>, Vec<Ty>, Ty)> {
match ty.callable_sig(self.db) {
Some(sig) => Some((None, sig.params().to_vec(), sig.ret().clone())),
None => {
let (f, args_ty, return_ty) = self.callable_sig_from_fn_trait(ty, num_args)?;
Some((Some(f), args_ty, return_ty))
}
}
}
fn callable_sig_from_fn_trait(
&mut self,
ty: &Ty,
num_args: usize,
) -> Option<(FnTrait, Vec<Ty>, Ty)> {
for (fn_trait_name, output_assoc_name, subtraits) in [
(FnTrait::FnOnce, sym::Output.clone(), &[FnTrait::Fn, FnTrait::FnMut][..]),
(FnTrait::AsyncFnMut, sym::CallRefFuture.clone(), &[FnTrait::AsyncFn]),
(FnTrait::AsyncFnOnce, sym::CallOnceFuture.clone(), &[]),
] {
let krate = self.trait_env.krate;
let fn_trait = fn_trait_name.get_id(self.db, krate)?;
let trait_data = self.db.trait_data(fn_trait);
let output_assoc_type =
trait_data.associated_type_by_name(&Name::new_symbol_root(output_assoc_name))?;
let mut arg_tys = Vec::with_capacity(num_args);
let arg_ty = TyBuilder::tuple(num_args)
.fill(|it| {
let arg = match it {
ParamKind::Type => self.new_type_var(),
ParamKind::Lifetime => unreachable!("Tuple with lifetime parameter"),
ParamKind::Const(_) => unreachable!("Tuple with const parameter"),
};
arg_tys.push(arg.clone());
arg.cast(Interner)
})
.build();
let b = TyBuilder::trait_ref(self.db, fn_trait);
if b.remaining() != 2 {
return None;
}
let mut trait_ref = b.push(ty.clone()).push(arg_ty).build();
let projection = TyBuilder::assoc_type_projection(
self.db,
output_assoc_type,
Some(trait_ref.substitution.clone()),
)
.fill_with_unknown()
.build();
let trait_env = self.trait_env.env.clone();
let obligation = InEnvironment {
goal: trait_ref.clone().cast(Interner),
environment: trait_env.clone(),
};
let canonical = self.canonicalize(obligation.clone());
if self.db.trait_solve(krate, self.trait_env.block, canonical.cast(Interner)).is_some()
{
self.register_obligation(obligation.goal);
let return_ty = self.normalize_projection_ty(projection);
for &fn_x in subtraits {
let fn_x_trait = fn_x.get_id(self.db, krate)?;
trait_ref.trait_id = to_chalk_trait_id(fn_x_trait);
let obligation: chalk_ir::InEnvironment<chalk_ir::Goal<Interner>> =
InEnvironment {
goal: trait_ref.clone().cast(Interner),
environment: trait_env.clone(),
};
let canonical = self.canonicalize(obligation.clone());
if self
.db
.trait_solve(krate, self.trait_env.block, canonical.cast(Interner))
.is_some()
{
return Some((fn_x, arg_tys, return_ty));
}
}
return Some((fn_trait_name, arg_tys, return_ty));
}
}
None
}
pub(super) fn insert_type_vars<T>(&mut self, ty: T) -> T
where
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
{
fold_generic_args(
ty,
|arg, _| match arg {
GenericArgData::Ty(ty) => GenericArgData::Ty(self.insert_type_vars_shallow(ty)),
// FIXME: insert lifetime vars once LifetimeData::InferenceVar
// and specific error variant for lifetimes start being constructed
GenericArgData::Lifetime(lt) => GenericArgData::Lifetime(lt),
GenericArgData::Const(c) => {
GenericArgData::Const(self.insert_const_vars_shallow(c))
}
},
DebruijnIndex::INNERMOST,
)
}
/// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
pub(super) fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty.kind(Interner) {
TyKind::Error => self.new_type_var(),
TyKind::InferenceVar(..) => {
let ty_resolved = self.resolve_ty_shallow(&ty);
if ty_resolved.is_unknown() {
self.new_type_var()
} else {
ty
}
}
_ => ty,
}
}
/// Replaces ConstScalar::Unknown by a new type var, so we can maybe still infer it.
pub(super) fn insert_const_vars_shallow(&mut self, c: Const) -> Const {
let data = c.data(Interner);
match &data.value {
ConstValue::Concrete(cc) => match &cc.interned {
crate::ConstScalar::Unknown => self.new_const_var(data.ty.clone()),
// try to evaluate unevaluated const. Replace with new var if const eval failed.
crate::ConstScalar::UnevaluatedConst(id, subst) => {
if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) {
eval
} else {
self.new_const_var(data.ty.clone())
}
}
_ => c,
},
_ => c,
}
}
/// Check if given type is `Sized` or not
pub(crate) fn is_sized(&mut self, ty: &Ty) -> bool {
let mut ty = ty.clone();
{
let mut structs = SmallVec::<[_; 8]>::new();
// Must use a loop here and not recursion because otherwise users will conduct completely
// artificial examples of structs that have themselves as the tail field and complain r-a crashes.
while let Some((AdtId::StructId(id), subst)) = ty.as_adt() {
let struct_data = self.db.struct_data(id);
if let Some((last_field, _)) = struct_data.variant_data.fields().iter().next_back()
{
let last_field_ty = self.db.field_types(id.into())[last_field]
.clone()
.substitute(Interner, subst);
if structs.contains(&ty) {
// A struct recursively contains itself as a tail field somewhere.
return true; // Don't overload the users with too many errors.
}
structs.push(ty);
// Structs can have DST as its last field and such cases are not handled
// as unsized by the chalk, so we do this manually.
ty = last_field_ty;
} else {
break;
};
}
}
// Early return for some obvious types
if matches!(
ty.kind(Interner),
TyKind::Scalar(..)
| TyKind::Ref(..)
| TyKind::Raw(..)
| TyKind::Never
| TyKind::FnDef(..)
| TyKind::Array(..)
| TyKind::Function(_)
) {
return true;
}
let Some(sized) = self
.db
.lang_item(self.trait_env.krate, LangItem::Sized)
.and_then(|sized| sized.as_trait())
else {
return false;
};
let sized_pred = WhereClause::Implemented(TraitRef {
trait_id: to_chalk_trait_id(sized),
substitution: Substitution::from1(Interner, ty.clone()),
});
let goal = GoalData::DomainGoal(chalk_ir::DomainGoal::Holds(sized_pred)).intern(Interner);
matches!(self.try_obligation(goal), Some(Solution::Unique(_)))
}
}
impl fmt::Debug for InferenceTable<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish()
}
}
mod resolve {
use super::InferenceTable;
use crate::{
ConcreteConst, Const, ConstData, ConstScalar, ConstValue, DebruijnIndex, GenericArg,
InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind,
};
use chalk_ir::{
cast::Cast,
fold::{TypeFoldable, TypeFolder},
};
#[derive(chalk_derive::FallibleTypeFolder)]
#[has_interner(Interner)]
pub(super) struct Resolver<
'a,
'b,
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
> {
pub(super) table: &'a mut InferenceTable<'b>,
pub(super) var_stack: &'a mut Vec<InferenceVar>,
pub(super) fallback: F,
}
impl<F> TypeFolder<Interner> for Resolver<'_, '_, F>
where
F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg,
{
fn as_dyn(&mut self) -> &mut dyn TypeFolder<Interner> {
self
}
fn interner(&self) -> Interner {
Interner
}
fn fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
outer_binder: DebruijnIndex,
) -> Ty {
let var = self.table.var_unification_table.inference_var_root(var);
if self.var_stack.contains(&var) {
// recursive type
let default = self.table.fallback_value(var, kind).cast(Interner);
return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone();
}
let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result.assert_ty_ref(Interner).clone()
} else {
let default = self.table.fallback_value(var, kind).cast(Interner);
(self.fallback)(var, VariableKind::Ty(kind), default, outer_binder)
.assert_ty_ref(Interner)
.clone()
};
result
}
fn fold_inference_const(
&mut self,
ty: Ty,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Const {
let var = self.table.var_unification_table.inference_var_root(var);
let default = ConstData {
ty: ty.clone(),
value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }),
}
.intern(Interner)
.cast(Interner);
if self.var_stack.contains(&var) {
// recursive
return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone();
}
if let Some(known_ty) = self.table.var_unification_table.probe_var(var) {
// known_ty may contain other variables that are known by now
self.var_stack.push(var);
let result = known_ty.fold_with(self, outer_binder);
self.var_stack.pop();
result.assert_const_ref(Interner).clone()
} else {
(self.fallback)(var, VariableKind::Const(ty), default, outer_binder)
.assert_const_ref(Interner)
.clone()
}
}
fn fold_inference_lifetime(
&mut self,
_var: InferenceVar,
_outer_binder: DebruijnIndex,
) -> Lifetime {
// fall back all lifetimes to 'error -- currently we don't deal
// with any lifetimes, but we can sometimes get some lifetime
// variables through Chalk's unification, and this at least makes
// sure we don't leak them outside of inference
crate::error_lifetime()
}
}
}