Skip single use lifetime lint for generated opaque types
Fix: #77175
The opaque type generated by the desugaring process of an async function uses the lifetimes defined by the originating function. The DefId for the lifetimes in the opaque type are different from the ones in the originating async function - as they should be, as far as I understand, and could therefore be considered a single use lifetimes, this causes the single_use_lifetimes lint to fail compilation if explicitly denied. This fix skips the lint for lifetimes used only once in generated opaque types for an async function that are declared in the parent async function definition.
More info in the comments on the original issue: 1 and 2
Use explicit log level in tracing instrument macro
Specify a log level in tracing instrument macro explicitly.
Additionally reduce the used log level from a default info level to a
debug level (all of those appear to be developer oriented logs, so there
should be no need to include them in release builds).
Move the Lock into symbol::Interner
This makes it easier to make the symbol interner (near) lock free in case of concurrent accesses in the future.
With https://github.com/rust-lang/rust/pull/87867 landed this shouldn't affect performance anymore.
Fast reject for NeedsNonConstDrop
Hopefully fixes the regression in #88558.
I've always wanted to help with the performance of rustc, but it doesn't feel the same when you are fixing a regression caused by your own PR...
r? `@oli-obk`
If any block on a goto chain has more than one predecessor, then the new
start block would have basic block predecessors.
Skip the transformation for the start block altogether, to avoid
violating the new invariant that the start block does not have any basic
block predecessors.
inline(always) on check_recursion_limit
r? `@oli-obk`
#88558 caused a regression, this PR adds `#[inline(always)]` to `check_recursion_limit`, a possible suspect of that regression.
Extend the `DepthFirstSearch` iterator so that it can be re-used and
extended with add'l start nodes. Then replace the FxHashSets of nodes
we were using in the fallback analysis with a single iterator. This
way we won't re-walk portions of the graph that are reached more than
once, and we also do less allocation etc.
Instead, we now record those type variables that are the target of a
`NeverToAny` adjustment and consider those to be the "diverging" type
variables. This allows us to remove the special case logic that
creates a type variable for `!` in coercion.
The comment seems incorrect. Testing revealed that the examples in
question still work (as well as some variants) even without the
special casing here.
We now fallback type variables using the following rules:
* Construct a coercion graph `A -> B` where `A` and `B` are unresolved
type variables or the `!` type.
* Let D be those variables that are reachable from `!`.
* Let N be those variables that are reachable from a variable not in
D.
* All variables in (D \ N) fallback to `!`.
* All variables in (D & N) fallback to `()`.
Suggest removing `#![feature]` for library features that have been stabilized
Issue: https://github.com/rust-lang/rust/issues/88802
Delayed the check if #![feature] has been used to enable lib features in a non-nightly build to occur after TyCtxt has been constructed.
Allow `panic!("{}", computed_str)` in const fn.
Special-case `panic!("{}", arg)` and translate it to `panic_display(&arg)`. `panic_display` will behave like `panic_any` in cosnt eval and behave like `panic!(format_args!("{}", arg))` in runtime.
This should bring Rust 2015 and 2021 to feature parity in terms of `const_panic`; and hopefully would unblock the stabilisation of #51999.
`@rustbot` modify labels: +T-compiler +T-libs +A-const-eval +A-const-fn
r? `@oli-obk`
Fix handling of `hir::GenericArg::Infer` in `wrong_number_of_generic_args.rs`
Fixes#87563. More precisely, I have fixed the "index out of bounds" error, which is what #87563 is about. The example given there still ICEs due to running into this `todo!()`, but I'd say that this is a separate issue:
c3c0f80d60/compiler/rustc_typeck/src/astconv/mod.rs (L460-L463)
Do not issue E0071 if a type error has already been reported
Fixes#88844. A suggested fix is already included in the error message for E0412, so with my changes, E0071 is simply not emitted anymore if the type in question is a "type error". This makes sense, I think, because we cannot confidently state that something is "not a struct" if we couldn't resolve it properly; and it's unnecessary to pollute the output with this additional error message, as it is a direct consequence of the former error.
I have also addressed the issue mentioned in https://github.com/rust-lang/rust/issues/88844#issuecomment-917324856 by changing the fixed example in the documentation to more closely match the erroneous code example.
Point to closure when emitting 'cannot move out' for captured variable
Attempts to fix#87456. The error message now points to the capturing closure, but I was not able to explain _why_ the closure implements `Fn` or `FnMut` (`TypeckResults::closure_kind_origins` did not contain anything for the closure in question).
cc `@Aaron1011`
Remove concept of 'completion' from the projection cache
Fixes#88910
When we initially store a `NormalizedTy` in the projection cache,
we discard all obligations that we can (while ensuring that we
don't cause any issues with incremental compilation).
Marking a projection cache entry as 'completed' discards all
obligations associated with it. This can only cause problems,
since any obligations stored in the cache are there for a reason
(e.g. they evaluate to `EvaluatedToOkModuloRegions`).
This commit removes `complete` and `complete_normalized` entirely.
PassWrapper: handle separate Module*SanitizerPass
Change ab41eef9aca3 in LLVM split MemorySanitizerPass into
MemorySanitizerPass for functions and ModuleMemorySanitizerPass for
modules. There's a related change for ThreadSanitizerPass, and in here
since we're using a ModulePassManager I only add the module flavor of
the pass on LLVM 14.
r? `@nikic` cc `@nagisa`
Improve error message for type mismatch in generator arguments
Fixes#88653. The code example given there is invalid because the `Generator` trait (unlike the `Fn` traits) does not take the generator arguments in tupled-up form (because there can only be one argument, from my understanding). Hence, the type error in the example in #88653 is correct, because the given generator takes a `bool` argument, whereas the function's return type talks about a generator with a `(bool,)` argument.
The error message is both confusing and wrong, though: It is wrong because it displays the wrong "expected signature", and it is confusing because both the "expected" and "found" notes point at the same span. With my changes, I get the following, more helpful output:
```
error[E0631]: type mismatch in generator arguments
--> test.rs:5:22
|
5 | fn foo(bar: bool) -> impl Generator<(bool,)> {
| ^^^^^^^^^^^^^^^^^^^^^^^ expected signature of `fn((bool,)) -> _`
6 | |bar| {
| ----- found signature of `fn(bool) -> _`
```
Couple of changes to FileSearch and SearchPath
* Turn a couple of regular comments into doc comments
* Move `get_tools_search_paths` from `FileSearch` to `Session`
* Use Lrc instead of Option to avoid duplication of a `SearchPath`
Fix ICE in `improper_ctypes_definitions` lint with all-ZST transparent types
Fixes#87496. There is also another function in the same file that looks fishy, but I haven't been able to produce an ICE there, and in any case, it's not related to #87496:
fd853c00e2/compiler/rustc_lint/src/types.rs (L720-L734)
r? ```@JohnTitor```