mirror of
https://github.com/rust-lang/rust.git
synced 2025-10-09 21:58:00 +00:00

Enable f16 and f128 on targets that were fixed in LLVM21 LLVM21 fixed the new float types on a number of targets: * SystemZ gained f16 support https://github.com/llvm/llvm-project/pull/109164 * Hexagon now uses soft f16 to avoid recursion bugs https://github.com/llvm/llvm-project/pull/130977 * Mips now correctly handles f128 (actually since LLVM20) https://github.com/llvm/llvm-project/pull/117525 * f128 is now correctly aligned when passing the stack on x86 https://github.com/llvm/llvm-project/pull/138092 Thus, enable the types on relevant targets for LLVM > 21.0.0. NVPTX also gained handling of f128 as a storage type, but it lacks support for basic math operations so is still disabled here. try-job: dist-i586-gnu-i586-i686-musl try-job: dist-i686-linux try-job: dist-i686-msvc try-job: dist-s390x-linux try-job: dist-various-1 try-job: dist-various-2 try-job: dist-x86_64-linux try-job: i686-gnu-1 try-job: i686-gnu-2 try-job: i686-msvc-1 try-job: i686-msvc-2 try-job: test-various
781 lines
32 KiB
Rust
781 lines
32 KiB
Rust
use std::collections::VecDeque;
|
|
use std::ffi::{CStr, CString};
|
|
use std::fmt::Write;
|
|
use std::path::Path;
|
|
use std::sync::Once;
|
|
use std::{ptr, slice, str};
|
|
|
|
use libc::c_int;
|
|
use rustc_codegen_ssa::base::wants_wasm_eh;
|
|
use rustc_codegen_ssa::target_features::cfg_target_feature;
|
|
use rustc_codegen_ssa::{TargetConfig, target_features};
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use rustc_data_structures::small_c_str::SmallCStr;
|
|
use rustc_fs_util::path_to_c_string;
|
|
use rustc_middle::bug;
|
|
use rustc_session::Session;
|
|
use rustc_session::config::{PrintKind, PrintRequest};
|
|
use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport};
|
|
use smallvec::{SmallVec, smallvec};
|
|
|
|
use crate::back::write::create_informational_target_machine;
|
|
use crate::{errors, llvm};
|
|
|
|
static INIT: Once = Once::new();
|
|
|
|
pub(crate) fn init(sess: &Session) {
|
|
unsafe {
|
|
// Before we touch LLVM, make sure that multithreading is enabled.
|
|
if llvm::LLVMIsMultithreaded() != 1 {
|
|
bug!("LLVM compiled without support for threads");
|
|
}
|
|
INIT.call_once(|| {
|
|
configure_llvm(sess);
|
|
});
|
|
}
|
|
}
|
|
|
|
fn require_inited() {
|
|
if !INIT.is_completed() {
|
|
bug!("LLVM is not initialized");
|
|
}
|
|
}
|
|
|
|
unsafe fn configure_llvm(sess: &Session) {
|
|
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
|
|
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
|
|
let mut llvm_args = Vec::with_capacity(n_args + 1);
|
|
|
|
unsafe {
|
|
llvm::LLVMRustInstallErrorHandlers();
|
|
}
|
|
// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
|
|
// box for the purpose of launching a debugger. However, on CI this will
|
|
// cause it to hang until it times out, which can take several hours.
|
|
if std::env::var_os("CI").is_some() {
|
|
unsafe {
|
|
llvm::LLVMRustDisableSystemDialogsOnCrash();
|
|
}
|
|
}
|
|
|
|
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
|
|
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
|
|
}
|
|
|
|
let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
|
|
let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
|
|
let sess_args = cg_opts.chain(tg_opts);
|
|
|
|
let user_specified_args: FxHashSet<_> =
|
|
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
|
|
|
|
{
|
|
// This adds the given argument to LLVM. Unless `force` is true
|
|
// user specified arguments are *not* overridden.
|
|
let mut add = |arg: &str, force: bool| {
|
|
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
|
|
let s = CString::new(arg).unwrap();
|
|
llvm_args.push(s.as_ptr());
|
|
llvm_c_strs.push(s);
|
|
}
|
|
};
|
|
// Set the llvm "program name" to make usage and invalid argument messages more clear.
|
|
add("rustc -Cllvm-args=\"...\" with", true);
|
|
if sess.opts.unstable_opts.time_llvm_passes {
|
|
add("-time-passes", false);
|
|
}
|
|
if sess.opts.unstable_opts.print_llvm_passes {
|
|
add("-debug-pass=Structure", false);
|
|
}
|
|
if sess.target.generate_arange_section
|
|
&& !sess.opts.unstable_opts.no_generate_arange_section
|
|
{
|
|
add("-generate-arange-section", false);
|
|
}
|
|
|
|
match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
|
|
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
|
|
MergeFunctions::Aliases => {
|
|
add("-mergefunc-use-aliases", false);
|
|
}
|
|
}
|
|
|
|
if wants_wasm_eh(sess) {
|
|
add("-wasm-enable-eh", false);
|
|
}
|
|
|
|
if sess.target.os == "emscripten"
|
|
&& !sess.opts.unstable_opts.emscripten_wasm_eh
|
|
&& sess.panic_strategy() == PanicStrategy::Unwind
|
|
{
|
|
add("-enable-emscripten-cxx-exceptions", false);
|
|
}
|
|
|
|
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
|
|
// during inlining. Unfortunately these may block other optimizations.
|
|
add("-preserve-alignment-assumptions-during-inlining=false", false);
|
|
|
|
// Use non-zero `import-instr-limit` multiplier for cold callsites.
|
|
add("-import-cold-multiplier=0.1", false);
|
|
|
|
if sess.print_llvm_stats() {
|
|
add("-stats", false);
|
|
}
|
|
|
|
for arg in sess_args {
|
|
add(&(*arg), true);
|
|
}
|
|
|
|
match (
|
|
sess.opts.unstable_opts.small_data_threshold,
|
|
sess.target.small_data_threshold_support(),
|
|
) {
|
|
// Set up the small-data optimization limit for architectures that use
|
|
// an LLVM argument to control this.
|
|
(Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
|
|
add(&format!("--{arg}={threshold}"), false)
|
|
}
|
|
_ => (),
|
|
};
|
|
}
|
|
|
|
if sess.opts.unstable_opts.llvm_time_trace {
|
|
unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
|
|
}
|
|
|
|
rustc_llvm::initialize_available_targets();
|
|
|
|
unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
|
|
}
|
|
|
|
pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
|
|
unsafe {
|
|
let file_name = path_to_c_string(file_name);
|
|
llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
|
|
}
|
|
}
|
|
|
|
enum TargetFeatureFoldStrength<'a> {
|
|
// The feature is only tied when enabling the feature, disabling
|
|
// this feature shouldn't disable the tied feature.
|
|
EnableOnly(&'a str),
|
|
// The feature is tied for both enabling and disabling this feature.
|
|
Both(&'a str),
|
|
}
|
|
|
|
impl<'a> TargetFeatureFoldStrength<'a> {
|
|
fn as_str(&self) -> &'a str {
|
|
match self {
|
|
TargetFeatureFoldStrength::EnableOnly(feat) => feat,
|
|
TargetFeatureFoldStrength::Both(feat) => feat,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) struct LLVMFeature<'a> {
|
|
llvm_feature_name: &'a str,
|
|
dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
|
|
}
|
|
|
|
impl<'a> LLVMFeature<'a> {
|
|
fn new(llvm_feature_name: &'a str) -> Self {
|
|
Self { llvm_feature_name, dependencies: SmallVec::new() }
|
|
}
|
|
|
|
fn with_dependencies(
|
|
llvm_feature_name: &'a str,
|
|
dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
|
|
) -> Self {
|
|
Self { llvm_feature_name, dependencies }
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for LLVMFeature<'a> {
|
|
type Item = &'a str;
|
|
type IntoIter = impl Iterator<Item = &'a str>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let dependencies = self.dependencies.into_iter().map(|feat| feat.as_str());
|
|
std::iter::once(self.llvm_feature_name).chain(dependencies)
|
|
}
|
|
}
|
|
|
|
/// Convert a Rust feature name to an LLVM feature name. Returning `None` means the
|
|
/// feature should be skipped, usually because it is not supported by the current
|
|
/// LLVM version.
|
|
///
|
|
/// WARNING: the features after applying `to_llvm_features` must be known
|
|
/// to LLVM or the feature detection code will walk past the end of the feature
|
|
/// array, leading to crashes.
|
|
///
|
|
/// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
|
|
/// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
|
|
///
|
|
/// Check the current rustc fork of LLVM in the repo at
|
|
/// <https://github.com/rust-lang/llvm-project/>. The commit in use can be found via the
|
|
/// `llvm-project` submodule in <https://github.com/rust-lang/rust/tree/master/src> Though note that
|
|
/// Rust can also be build with an external precompiled version of LLVM which might lead to failures
|
|
/// if the oldest tested / supported LLVM version doesn't yet support the relevant intrinsics.
|
|
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
|
|
let arch = if sess.target.arch == "x86_64" {
|
|
"x86"
|
|
} else if sess.target.arch == "arm64ec" {
|
|
"aarch64"
|
|
} else if sess.target.arch == "sparc64" {
|
|
"sparc"
|
|
} else if sess.target.arch == "powerpc64" {
|
|
"powerpc"
|
|
} else {
|
|
&*sess.target.arch
|
|
};
|
|
match (arch, s) {
|
|
("x86", "sse4.2") => Some(LLVMFeature::with_dependencies(
|
|
"sse4.2",
|
|
smallvec![TargetFeatureFoldStrength::EnableOnly("crc32")],
|
|
)),
|
|
("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
|
|
("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
|
|
("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
|
|
("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
|
|
("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
|
|
("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
|
|
("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
|
|
("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
|
|
("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
|
|
("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
|
|
("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
|
|
("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
|
|
("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
|
|
// Before LLVM 20 those two features were packaged together as b16b16
|
|
("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
|
|
("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
|
|
// Rust ties fp and neon together.
|
|
("aarch64", "neon") => Some(LLVMFeature::with_dependencies(
|
|
"neon",
|
|
smallvec![TargetFeatureFoldStrength::Both("fp-armv8")],
|
|
)),
|
|
// In LLVM neon implicitly enables fp, but we manually enable
|
|
// neon when a feature only implicitly enables fp
|
|
("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
|
|
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("aarch64", "fpmr") => None, // only existed in 18
|
|
("arm", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
|
// NVPTX targets added in LLVM 20
|
|
("nvptx64", "sm_100") if get_version().0 < 20 => None,
|
|
("nvptx64", "sm_100a") if get_version().0 < 20 => None,
|
|
("nvptx64", "sm_101") if get_version().0 < 20 => None,
|
|
("nvptx64", "sm_101a") if get_version().0 < 20 => None,
|
|
("nvptx64", "sm_120") if get_version().0 < 20 => None,
|
|
("nvptx64", "sm_120a") if get_version().0 < 20 => None,
|
|
("nvptx64", "ptx86") if get_version().0 < 20 => None,
|
|
("nvptx64", "ptx87") if get_version().0 < 20 => None,
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("loongarch64", "div32" | "lam-bh" | "lamcas" | "ld-seq-sa" | "scq")
|
|
if get_version().0 < 20 =>
|
|
{
|
|
None
|
|
}
|
|
// Filter out features that are not supported by the current LLVM version
|
|
("riscv32" | "riscv64", "zacas") if get_version().0 < 20 => None,
|
|
(
|
|
"s390x",
|
|
"message-security-assist-extension12"
|
|
| "concurrent-functions"
|
|
| "miscellaneous-extensions-4"
|
|
| "vector-enhancements-3"
|
|
| "vector-packed-decimal-enhancement-3",
|
|
) if get_version().0 < 20 => None,
|
|
// Enable the evex512 target feature if an avx512 target feature is enabled.
|
|
("x86", s) if s.starts_with("avx512") => Some(LLVMFeature::with_dependencies(
|
|
s,
|
|
smallvec![TargetFeatureFoldStrength::EnableOnly("evex512")],
|
|
)),
|
|
// Support for `wide-arithmetic` will first land in LLVM 20 as part of
|
|
// llvm/llvm-project#111598
|
|
("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None,
|
|
("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")),
|
|
// In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used".
|
|
// https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28
|
|
// Before LLVM 19, there was no `v8plus` feature and `v9` means "SPARC-V9 instruction available".
|
|
// https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26
|
|
("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")),
|
|
("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")),
|
|
// These new `amx` variants and `movrs` were introduced in LLVM20
|
|
("x86", "amx-avx512" | "amx-fp8" | "amx-movrs" | "amx-tf32" | "amx-transpose")
|
|
if get_version().0 < 20 =>
|
|
{
|
|
None
|
|
}
|
|
("x86", "movrs") if get_version().0 < 20 => None,
|
|
("x86", "avx10.1") => Some(LLVMFeature::new("avx10.1-512")),
|
|
("x86", "avx10.2") if get_version().0 < 20 => None,
|
|
("x86", "avx10.2") if get_version().0 >= 20 => Some(LLVMFeature::new("avx10.2-512")),
|
|
("x86", "apxf") => Some(LLVMFeature::with_dependencies(
|
|
"egpr",
|
|
smallvec![
|
|
TargetFeatureFoldStrength::Both("push2pop2"),
|
|
TargetFeatureFoldStrength::Both("ppx"),
|
|
TargetFeatureFoldStrength::Both("ndd"),
|
|
TargetFeatureFoldStrength::Both("ccmp"),
|
|
TargetFeatureFoldStrength::Both("cf"),
|
|
TargetFeatureFoldStrength::Both("nf"),
|
|
TargetFeatureFoldStrength::Both("zu"),
|
|
],
|
|
)),
|
|
(_, s) => Some(LLVMFeature::new(s)),
|
|
}
|
|
}
|
|
|
|
/// Used to generate cfg variables and apply features.
|
|
/// Must express features in the way Rust understands them.
|
|
///
|
|
/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
|
|
pub(crate) fn target_config(sess: &Session) -> TargetConfig {
|
|
let target_machine = create_informational_target_machine(sess, true);
|
|
|
|
let (unstable_target_features, target_features) = cfg_target_feature(sess, |feature| {
|
|
// This closure determines whether the target CPU has the feature according to LLVM. We do
|
|
// *not* consider the `-Ctarget-feature`s here, as that will be handled later in
|
|
// `cfg_target_feature`.
|
|
if let Some(feat) = to_llvm_features(sess, feature) {
|
|
// All the LLVM features this expands to must be enabled.
|
|
for llvm_feature in feat {
|
|
let cstr = SmallCStr::new(llvm_feature);
|
|
// `LLVMRustHasFeature` is moderately expensive. On targets with many
|
|
// features (e.g. x86) these calls take a non-trivial fraction of runtime
|
|
// when compiling very small programs.
|
|
if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
});
|
|
|
|
let mut cfg = TargetConfig {
|
|
target_features,
|
|
unstable_target_features,
|
|
has_reliable_f16: true,
|
|
has_reliable_f16_math: true,
|
|
has_reliable_f128: true,
|
|
has_reliable_f128_math: true,
|
|
};
|
|
|
|
update_target_reliable_float_cfg(sess, &mut cfg);
|
|
cfg
|
|
}
|
|
|
|
/// Determine whether or not experimental float types are reliable based on known bugs.
|
|
fn update_target_reliable_float_cfg(sess: &Session, cfg: &mut TargetConfig) {
|
|
let target_arch = sess.target.arch.as_ref();
|
|
let target_os = sess.target.options.os.as_ref();
|
|
let target_env = sess.target.options.env.as_ref();
|
|
let target_abi = sess.target.options.abi.as_ref();
|
|
let target_pointer_width = sess.target.pointer_width;
|
|
let version = get_version();
|
|
let lt_20_1_1 = version < (20, 1, 1);
|
|
let lt_21_0_0 = version < (21, 0, 0);
|
|
|
|
cfg.has_reliable_f16 = match (target_arch, target_os) {
|
|
// LLVM crash without neon <https://github.com/llvm/llvm-project/issues/129394> (fixed in llvm20)
|
|
("aarch64", _)
|
|
if !cfg.target_features.iter().any(|f| f.as_str() == "neon") && lt_20_1_1 =>
|
|
{
|
|
false
|
|
}
|
|
// Unsupported <https://github.com/llvm/llvm-project/issues/94434>
|
|
("arm64ec", _) => false,
|
|
// Selection failure <https://github.com/llvm/llvm-project/issues/50374> (fixed in llvm21)
|
|
("s390x", _) if lt_21_0_0 => false,
|
|
// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
|
|
("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false,
|
|
// Infinite recursion <https://github.com/llvm/llvm-project/issues/97981>
|
|
("csky", _) => false,
|
|
("hexagon", _) if lt_21_0_0 => false, // (fixed in llvm21)
|
|
("powerpc" | "powerpc64", _) => false,
|
|
("sparc" | "sparc64", _) => false,
|
|
("wasm32" | "wasm64", _) => false,
|
|
// `f16` support only requires that symbols converting to and from `f32` are available. We
|
|
// provide these in `compiler-builtins`, so `f16` should be available on all platforms that
|
|
// do not have other ABI issues or LLVM crashes.
|
|
_ => true,
|
|
};
|
|
|
|
cfg.has_reliable_f128 = match (target_arch, target_os) {
|
|
// Unsupported <https://github.com/llvm/llvm-project/issues/94434>
|
|
("arm64ec", _) => false,
|
|
// Selection bug <https://github.com/llvm/llvm-project/issues/96432> (fixed in llvm20)
|
|
("mips64" | "mips64r6", _) if lt_20_1_1 => false,
|
|
// Selection bug <https://github.com/llvm/llvm-project/issues/95471>. This issue is closed
|
|
// but basic math still does not work.
|
|
("nvptx64", _) => false,
|
|
// Unsupported https://github.com/llvm/llvm-project/issues/121122
|
|
("amdgpu", _) => false,
|
|
// ABI bugs <https://github.com/rust-lang/rust/issues/125109> et al. (full
|
|
// list at <https://github.com/rust-lang/rust/issues/116909>)
|
|
("powerpc" | "powerpc64", _) => false,
|
|
// ABI unsupported <https://github.com/llvm/llvm-project/issues/41838>
|
|
("sparc", _) => false,
|
|
// Stack alignment bug <https://github.com/llvm/llvm-project/issues/77401>. NB: tests may
|
|
// not fail if our compiler-builtins is linked. (fixed in llvm21)
|
|
("x86", _) if lt_21_0_0 => false,
|
|
// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
|
|
("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false,
|
|
// There are no known problems on other platforms, so the only requirement is that symbols
|
|
// are available. `compiler-builtins` provides all symbols required for core `f128`
|
|
// support, so this should work for everything else.
|
|
_ => true,
|
|
};
|
|
|
|
// Assume that working `f16` means working `f16` math for most platforms, since
|
|
// operations just go through `f32`.
|
|
cfg.has_reliable_f16_math = cfg.has_reliable_f16;
|
|
|
|
cfg.has_reliable_f128_math = match (target_arch, target_os) {
|
|
// LLVM lowers `fp128` math to `long double` symbols even on platforms where
|
|
// `long double` is not IEEE binary128. See
|
|
// <https://github.com/llvm/llvm-project/issues/44744>.
|
|
//
|
|
// This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits
|
|
// (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86`
|
|
// (ld is 80-bit extended precision).
|
|
//
|
|
// musl does not implement the symbols required for f128 math at all.
|
|
_ if target_env == "musl" => false,
|
|
("x86_64", _) => false,
|
|
(_, "linux") if target_pointer_width == 64 => true,
|
|
_ => false,
|
|
} && cfg.has_reliable_f128;
|
|
}
|
|
|
|
pub(crate) fn print_version() {
|
|
let (major, minor, patch) = get_version();
|
|
println!("LLVM version: {major}.{minor}.{patch}");
|
|
}
|
|
|
|
pub(crate) fn get_version() -> (u32, u32, u32) {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
|
|
}
|
|
}
|
|
|
|
pub(crate) fn print_passes() {
|
|
// Can be called without initializing LLVM
|
|
unsafe {
|
|
llvm::LLVMRustPrintPasses();
|
|
}
|
|
}
|
|
|
|
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
|
|
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
|
|
let mut ret = Vec::with_capacity(len);
|
|
for i in 0..len {
|
|
unsafe {
|
|
let mut feature = ptr::null();
|
|
let mut desc = ptr::null();
|
|
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
|
|
if feature.is_null() || desc.is_null() {
|
|
bug!("LLVM returned a `null` target feature string");
|
|
}
|
|
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 feature string: {}", e);
|
|
});
|
|
ret.push((feature, desc));
|
|
}
|
|
}
|
|
ret
|
|
}
|
|
|
|
pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
|
|
require_inited();
|
|
let tm = create_informational_target_machine(sess, false);
|
|
match req.kind {
|
|
PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out),
|
|
PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out),
|
|
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
|
|
}
|
|
}
|
|
|
|
fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let cpu_names = llvm::build_string(|s| unsafe {
|
|
llvm::LLVMRustPrintTargetCPUs(&tm, s);
|
|
})
|
|
.unwrap();
|
|
|
|
struct Cpu<'a> {
|
|
cpu_name: &'a str,
|
|
remark: String,
|
|
}
|
|
// Compare CPU against current target to label the default.
|
|
let target_cpu = handle_native(&sess.target.cpu);
|
|
let make_remark = |cpu_name| {
|
|
if cpu_name == target_cpu {
|
|
// FIXME(#132514): This prints the LLVM target string, which can be
|
|
// different from the Rust target string. Is that intended?
|
|
let target = &sess.target.llvm_target;
|
|
format!(
|
|
" - This is the default target CPU for the current build target (currently {target})."
|
|
)
|
|
} else {
|
|
"".to_owned()
|
|
}
|
|
};
|
|
let mut cpus = cpu_names
|
|
.lines()
|
|
.map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
|
|
.collect::<VecDeque<_>>();
|
|
|
|
// Only print the "native" entry when host and target are the same arch,
|
|
// since otherwise it could be wrong or misleading.
|
|
if sess.host.arch == sess.target.arch {
|
|
let host = get_host_cpu_name();
|
|
cpus.push_front(Cpu {
|
|
cpu_name: "native",
|
|
remark: format!(" - Select the CPU of the current host (currently {host})."),
|
|
});
|
|
}
|
|
|
|
let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
|
|
writeln!(out, "Available CPUs for this target:").unwrap();
|
|
for Cpu { cpu_name, remark } in cpus {
|
|
// Only pad the CPU name if there's a remark to print after it.
|
|
let width = if remark.is_empty() { 0 } else { max_name_width };
|
|
writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
|
|
}
|
|
}
|
|
|
|
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
|
|
let mut llvm_target_features = llvm_target_features(tm);
|
|
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
|
|
let mut rustc_target_features = sess
|
|
.target
|
|
.rust_target_features()
|
|
.iter()
|
|
.filter_map(|(feature, gate, _implied)| {
|
|
if !gate.in_cfg() {
|
|
// Only list (experimentally) supported features.
|
|
return None;
|
|
}
|
|
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
|
|
// strings.
|
|
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
|
|
let desc =
|
|
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
|
|
Some(index) => {
|
|
known_llvm_target_features.insert(llvm_feature);
|
|
llvm_target_features[index].1
|
|
}
|
|
None => "",
|
|
};
|
|
|
|
Some((*feature, desc))
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Since we add this at the end ...
|
|
rustc_target_features.extend_from_slice(&[(
|
|
"crt-static",
|
|
"Enables C Run-time Libraries to be statically linked",
|
|
)]);
|
|
// ... we need to sort the list again.
|
|
rustc_target_features.sort();
|
|
|
|
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
|
|
|
|
let max_feature_len = llvm_target_features
|
|
.iter()
|
|
.chain(rustc_target_features.iter())
|
|
.map(|(feature, _desc)| feature.len())
|
|
.max()
|
|
.unwrap_or(0);
|
|
|
|
writeln!(out, "Features supported by rustc for this target:").unwrap();
|
|
for (feature, desc) in &rustc_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
|
|
for (feature, desc) in &llvm_target_features {
|
|
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
|
|
}
|
|
if llvm_target_features.is_empty() {
|
|
writeln!(out, " Target features listing is not supported by this LLVM version.")
|
|
.unwrap();
|
|
}
|
|
writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
|
|
writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
|
|
.unwrap();
|
|
writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
|
|
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
|
|
}
|
|
|
|
/// Returns the host CPU name, according to LLVM.
|
|
fn get_host_cpu_name() -> &'static str {
|
|
let mut len = 0;
|
|
// SAFETY: The underlying C++ global function returns a `StringRef` that
|
|
// isn't tied to any particular backing buffer, so it must be 'static.
|
|
let slice: &'static [u8] = unsafe {
|
|
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
|
|
assert!(!ptr.is_null());
|
|
slice::from_raw_parts(ptr, len)
|
|
};
|
|
str::from_utf8(slice).expect("host CPU name should be UTF-8")
|
|
}
|
|
|
|
/// If the given string is `"native"`, returns the host CPU name according to
|
|
/// LLVM. Otherwise, the string is returned as-is.
|
|
fn handle_native(cpu_name: &str) -> &str {
|
|
match cpu_name {
|
|
"native" => get_host_cpu_name(),
|
|
_ => cpu_name,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn target_cpu(sess: &Session) -> &str {
|
|
let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
|
|
handle_native(cpu_name)
|
|
}
|
|
|
|
/// The target features for compiler flags other than `-Ctarget-features`.
|
|
fn llvm_features_by_flags(sess: &Session, features: &mut Vec<String>) {
|
|
target_features::retpoline_features_by_flags(sess, features);
|
|
|
|
// -Zfixed-x18
|
|
if sess.opts.unstable_opts.fixed_x18 {
|
|
if sess.target.arch != "aarch64" {
|
|
sess.dcx().emit_fatal(errors::FixedX18InvalidArch { arch: &sess.target.arch });
|
|
} else {
|
|
features.push("+reserve-x18".into());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
|
|
/// `--target` and similar).
|
|
pub(crate) fn global_llvm_features(
|
|
sess: &Session,
|
|
diagnostics: bool,
|
|
only_base_features: bool,
|
|
) -> Vec<String> {
|
|
// Features that come earlier are overridden by conflicting features later in the string.
|
|
// Typically we'll want more explicit settings to override the implicit ones, so:
|
|
//
|
|
// * Features from -Ctarget-cpu=*; are overridden by [^1]
|
|
// * Features implied by --target; are overridden by
|
|
// * Features from -Ctarget-feature; are overridden by
|
|
// * function specific features.
|
|
//
|
|
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
|
|
// through LLVM TargetMachine implementation.
|
|
//
|
|
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
|
|
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
|
|
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
|
|
// the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
|
|
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
|
|
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
|
|
// should be taken in cases like these.
|
|
let mut features = vec![];
|
|
|
|
// -Ctarget-cpu=native
|
|
match sess.opts.cg.target_cpu {
|
|
Some(ref s) if s == "native" => {
|
|
// We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
|
|
// that for LLVM, so the features implied by that CPU name will be available everywhere.
|
|
// However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
|
|
// some of the instructions are available or not. So we have to also explicitly ask for
|
|
// the exact set of features available on the host, and enable all of them.
|
|
let features_string = unsafe {
|
|
let ptr = llvm::LLVMGetHostCPUFeatures();
|
|
let features_string = if !ptr.is_null() {
|
|
CStr::from_ptr(ptr)
|
|
.to_str()
|
|
.unwrap_or_else(|e| {
|
|
bug!("LLVM returned a non-utf8 features string: {}", e);
|
|
})
|
|
.to_owned()
|
|
} else {
|
|
bug!("could not allocate host CPU features, LLVM returned a `null` string");
|
|
};
|
|
|
|
llvm::LLVMDisposeMessage(ptr);
|
|
|
|
features_string
|
|
};
|
|
features.extend(features_string.split(',').map(String::from));
|
|
}
|
|
Some(_) | None => {}
|
|
};
|
|
|
|
// Features implied by an implicit or explicit `--target`.
|
|
features.extend(
|
|
sess.target
|
|
.features
|
|
.split(',')
|
|
.filter(|v| !v.is_empty())
|
|
// Drop +v8plus feature introduced in LLVM 20.
|
|
// (Hard-coded target features do not go through `to_llvm_feature` since they already
|
|
// are LLVM feature names, hence we need a special case here.)
|
|
.filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0))
|
|
.map(String::from),
|
|
);
|
|
|
|
if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
|
|
features.push("+exception-handling".into());
|
|
}
|
|
|
|
// -Ctarget-features
|
|
if !only_base_features {
|
|
target_features::flag_to_backend_features(
|
|
sess,
|
|
diagnostics,
|
|
|feature| {
|
|
to_llvm_features(sess, feature)
|
|
.map(|f| SmallVec::<[&str; 2]>::from_iter(f.into_iter()))
|
|
.unwrap_or_default()
|
|
},
|
|
|feature, enable| {
|
|
let enable_disable = if enable { '+' } else { '-' };
|
|
// We run through `to_llvm_features` when
|
|
// passing requests down to LLVM. This means that all in-language
|
|
// features also work on the command line instead of having two
|
|
// different names when the LLVM name and the Rust name differ.
|
|
let Some(llvm_feature) = to_llvm_features(sess, feature) else { return };
|
|
|
|
features.extend(
|
|
std::iter::once(format!(
|
|
"{}{}",
|
|
enable_disable, llvm_feature.llvm_feature_name
|
|
))
|
|
.chain(llvm_feature.dependencies.into_iter().filter_map(
|
|
move |feat| match (enable, feat) {
|
|
(_, TargetFeatureFoldStrength::Both(f))
|
|
| (true, TargetFeatureFoldStrength::EnableOnly(f)) => {
|
|
Some(format!("{enable_disable}{f}"))
|
|
}
|
|
_ => None,
|
|
},
|
|
)),
|
|
)
|
|
},
|
|
);
|
|
}
|
|
|
|
// We add this in the "base target" so that these show up in `sess.unstable_target_features`.
|
|
llvm_features_by_flags(sess, &mut features);
|
|
|
|
features
|
|
}
|
|
|
|
pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
|
|
let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
|
|
Some(handle_native(name))
|
|
}
|